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ABSTRACT 

The main objective of this dissertation is to extract parameters from multiple 

wavelength images, on a pixel-to-pixel basis, when the images are corrupted with noise 

and a point spread function. The data used are from the field of radio astronomy. 

The very large array (VLA) at Socorro in New Mexico was used to observe planetary 

nebula NGC 7027 at three different wave lengths, 2 cm, 6 cm and 20 cm. A tem

perature model, describing the temperature variation in the nebula as a function of 

optical depth, is postulated. Mathematical expressions for the brightness distribution 

(flux density) of the nebula, at the three observed wavelengths, are obtained. Using 

these three equations and the three data values available, one from the observed flux 

density map at each wavelength, it is possible to solve for two temperature parameters 

and one optical depth parameter at each pixel location. 

Due to the fact that the number of unknowns equal the number of equations 

available, estimation theory cannot be used to smooth any noise present in the data 

values. It was found that a direct solution of the three highly nonlinear flux density 

equations is very sensitive to noise in the data. Results obtained from solving for the 

three unknown parameters directly, as discussed above, were not physical realizable. 

This was partly due to the effect of incomplete sampling at the time when the data 

were gathered and to noise in the system. 
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The application of rigorous digital parameter estimation techniques result in 

estimated parameters that are also not physically realizable. The estimated values 

for the temperature parameters are for example either too high or negative, which 

is not physical possible. Simulation studies have shown that a "double smoothing" 

technique improves the results by a large margin. This technique consists of two 

parts: in the first part the original observed data are smoothed using a running 

window and in the second part a similar smoothing of the estimated parameters are 

done. This method provides an improvement over the previous method of directly 

solving the three nonlinear flux density equations when no adjacent pixel information 

was taken into account. When using the double smoothing technique, results were 

obtained that were not only physical realizable, but also compared well with previous 

results obtained from a two dimensional solution of the problem, assuming a constant 

temperature along the line of sight. 

To conclude the investigation, an approximate solution was found for the same 

temperature and optical depth parameters. This solution takes into account approx

imations that can be made as a result of the physical characteristics of the nebula as 

well as the results obtained from the previous 2-D study. 
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1. BACKGROUND 

1.1 Introduction 

The objective of the research in this dissertation is to develop a method to 

estimate parameters from digitized images. Two different cases will be considered: 

1. Estimation of parameters describing a physical object using only one digitized 

image. 

2. Estimation of parameters describing a physical characteristic using multiple 

digitized images. 

The second problem will be investigated first. This problem will be approached by 

trying to estimate the parameters describing the temperature variation in Planetary 

Nebula NGC 7027. This statement deserves a bit more attention. 

1.2 Astronomical Background 

Most of our information about the universe has been obtained from electromag

netic radiation. Before 1930 this information was restricted to the observation of 

visible light with wavelengths reaching from the near ultraviolet to the near infrared, 

0.35 < A < 1 ^m. Astronomers used optical telescopes to investigate these data 
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so this science was known as optical astronomy. 

Since 1930 additional "windows" transparent to electromagnetic radiation of 

widely different wavelength ranges were opened in the blanket of the earth's atmo

sphere (Rohlfs, 1986). The radio window spanning from A ~ 10 m to A ~ 1 mm 

was the first new spectral range to become available to astronomy. Astronomers used 

radio telescopes to investigate the observations in the radio window so this science is 

known as Radio Astronomy. 

A very important point must be emphasized here: The objects that emit the 

radiation in the different windows are the same. There is only one single world 

behind the radiation in the different windows although the aspect of the universe 

may differ from window to window. This is one of the fundamental axioms of science 

(Rohlfs, 1986). 

The angular resolution of a radio telescope is given by (Rohlfs, 1986) 

where 

5 = smallest angular separation between two point sources that are still recognizable 

as separate objects, 

A = radiation wavelength, and 

D = diameter of telescope. 

It is clear that the only way to improve the angular resolution at a specific 

wavelength is to increase the diameter D of the telescope. This solution is constrained 

by practical limits for the telescope size. These limits are in general in the range 
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25 — 100 m. 

As an alternative, radio astronomers have improved resolving power by linking 

two or more telescopes into an interferometer arrangement (Rohlfs, 1986). In this 

case, D in equation (1.1) is the separation between the phase centers of the antennas 

when projected in the direction of the source. 

As the science of astronomy progresses, it is important to evolve the methods of 

extraction of information from the data. In this dissertation we focus on parameter 

estimation from multiple data sets. 

1.2.1 VLA (Very Large Array) 

The data used in this investigation were observed with the Very Large Array 

(VLA) of the National Radio Astronomy Observation (NRAO) in New Mexico. The 

VLA consists of twenty-seven antennas arranged in a three-armed, equiangular Y-

shaped array with nine antennas in each arm as shown in Figure 1.1. All twenty-

seven antennas are paired with each other providing 351 combinations (Thompson et 

al., 1986). Variable antenna locations are possible with this setup and the four main 

configurations are known as the A, B, C and D configurations. 

These configurations differ in terms of the length spanned by the antennas in the 

different arms and were designed to give almost the same resolution for observations 

at 1.35 cm, 2 cm, 6 cm and 20 cm for the A, B, C and D arrays, respectively. This 

arrangement is called a scaled array. 
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Figure 1.1: Very Large Array 

1.2.2 Data Generation 

The VLA was used to observe radio waves emitted from the nebula under inves

tigation. These radio waves are generated in the nebula by a process called free-free 

emission (or bremsstrahlung), graphically depicted in Figure 1.2 (Rohlfs, 1986). 

What is meant by free-free emission is the following. In the nebula there are lots 

of free electrons and free protons from hydrogen. As a free electron moves past a free 

proton, the electron de-accelerates and loses energy in the form of a radio wave. It is 

these radio waves that are being observed with the VLA at different frequencies. A 

spectrum of the brightness distribution for free-free emission is shown in Figure 1.3. 
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radiowave 

electron 

proton 

Figure 1.2: Free-free emission 

S 

A 
20 cm 6 cm 2 cm 

Figure 1,3: A spectrum of the brightness distribution for free-free emission 
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1.2.3 Data Observation 

The data are observed with the VLA in the spatial frequency (u-v) domain. The 

principal mathematical procedure is to transform the data in the u-v domain to the 

x-y (spatial) domain by means of an inverse Fourier transform. The transformed data 

in the x-y domain gives an image of the nebula being observed. 

1.2.4 Problems in Observed Data 

There are certain problems inherent in the method used to observe the data 

which creates errors in the map in the spatial domain. These problems are: 

1. The data measurements are noisy. There are two sources contributing to the 

noise in the observed data values: 

(a) Noise due to the electronics used in the VLA used to observe the data. 

(b) Atmospheric noise due to the interaction of the radio waves with the water 

vapor in the atmosphere. 

2. Missing data values in the u-v domain cause large sidelobes in the spatial do

main. 

3. The time span of the observations are limited. 

4. Synthesized beamwidths are not exactly the same. 

5. The data values are finite in length. 
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1.3 Estimation Background 

It would be wonderful if we could live in a perfect world where all data mea

surements were exact. However, in reality, all data measurements encountered in 

engineering and most branches of science are noisy. The need to obtain the best pos

sible results for unknown parameters form these noisy data led to the development of 

what is today known as estimation theory. It is generally accepted that the progenitor 

of estimation theory was Karl Friederich Gauss, but R.A. Fisher, Norbert Wiener, 

Rudolph Kalman and many others also made valuable contributions (Mendel, 1987, 

p. xiii.) 

1.3.1 Estimation Techniques 

Many different estimation techniques have been developed through the years. 

Most of these techniques can be classified as either parameter estimation or signal 

(state) estimation, although there is an overlap in some situations. Two of the most 

important papers published in the area of state estimation were by Kalman (1960), 

and Kalman and Bucy (1961). The area of state estimation can be divided into mean-

squared prediction, mean-squared filtering and mean-squared smoothing. All three of 

these operations can be implemented using a Kalman filter or modified Kalman filter. 

The interested reader is referred to Brown (1983) for a thorough discussion of these 

implementations. No wonder that the Kalman filter is even today the most popular 

way to do state estimation. 

This dissertation, however, will primarily be concerned with the estimation of 

parameters from noisy data. The discipline of parameter estimation can be divided 
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into the estimation of deterministic parameters and the estimation of random param

eters. Different techniques have been developed for each situation. Techniques used 

for deterministic parameter estimation include least squares (LS) estimation, best 

linear unbiased estimation (BLUE) and maximum likelihood (ML) estimation. Ran

dom parameter estimation is handled by techniques such as mean-squared estimation, 

maximum a posteriori estimation, BLUE and weighted least squares. All these differ

ent techniques and their interrelationships were covered in detail by Mendel (1987). 

1.3.2 . Parameter Estimation from Digitized Image Data 

In an overdetermined system (in which the number of data measurements exceeds 

the number of unknown parameters), all these parameter estimation techniques use 

the extra data values (the difference between the number of observations and the 

number of unknown parameters), under different criteria, to smooth the noise in the 

observation values to obtain more accurate estimates of the unknown parameters. 

However, when the number of equations equals the number of unknown parameters, 

there is no extra data available to smooth the noise in the observed values. All that 

can be done in this case is to solve the system of equations uniquely to fit the noisy 

observed values exactly. 

A possible exception to the situation discussed in the previous paragraph, where 

the number of data values available equals the number of unknown parameters, is the 

solution of a system of equations using data values when these values are obtained 

from a digitized image. Due to the statistical relationship between data values at 

adjacent pixels in an image, the idea would be to use adjacent pixel data values to 
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smooth the data value at a specific pixel. The smoothed data values can then be used 

in the parameter estimation problem. 

In this dissertation, the emphasis will be to estimate three parameters in three 

highly nonlinear equations, where the noisy data values in each equation are obtained 

from digitized images. Attempts have already been made in the literature to estimate 

parameters from digitized image data. An example is the estimation of 3-D skeletons 

and transverse areas of coronary arteries from biplane angiograms by Kitamura, Tobis 

and Sklansky (1988). However, a literature study did not produce any previous work 

done on the estimation of n parameters in n nonlinear equations (where n is small) on 

a pixel-to-pixel basis in an image. This was the motivation for the study undertaken. 

A question that immediately comes to mind and must be addressed before the 

investigation is: "Why not obtain more data measurements and use the established 

theory to estimate the parameters?" The answer is that this is not always possible. 

In radio astronomy an objective often is to obtain the maximum information from 

the available data. This necessarily leads to the situation discussed above where the 

number of unknown parameters in a system of equations equals the number of data 

values available. 
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2. PROBLEM STATEMENT 

2.1 Introduction 

The objective of the study undertaken in the first investigation is to find a model 

describing the temperature variation in Planetary Nebula NGC 7027. This model 

will be used to estimate the surface temperature of the nebula as well as the variation 

in temperature along the line of sight. To be able to draw maps of the estimated 

temperatures as they vary in the nebula, these temperatures must be estimated on a 

pixel-to-pixel basis. 

The way the study was done is as follows: Three Aux density maps of the nebula 

were observed at 2 cm, 6 cm and 20 cm (see Basart and Daub, 1987 for discussion of 

6 cm and 20 cm data). Each of these observed fliix density maps is of size 32 x 28 

pixels. A temperature model describing the temperature variation in the nebula along 

the line of sight (as a function of optical depth) was postulated. This temperature 

model was used to obtain theoretical flux density expressions at the three wavelengths 

used to observe the nebula. 

The next step was to use the observed flux density values in the observed flux 

density maps to solve for the unknown parameters in the theoretical flux density 

equations on a pixel-to-pixel basis. In the end, estimated values for all the unknown 
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parameters in the postulated temperature model was calculated at every pixel in the 

32 X 28 pixel maps based on the flux density value from the same pixel location in 

each of the three flux density maps. 

It must be pointed out that the actual observed flux density maps were of size 

512 X 512 pixels, but most of the nebula information was concentrated in only a 

small section of these observed maps. Contour plots drawn from the observed flux 

density maps showed that all the contours, down to a level of 0.5%, were contained 

in a section of the maps of size no larger than 32 x 28 pixels. These small sections 

were cut from the actual observed maps and will be referred to as the observed flux 

density maps from here on without any misunderstanding. 

A similar study was previously done by Basart and Daub (1987) for the two-

dimensional case. They used observations at 6 cm and 20 cm, obtained with the 

VLA, to derive two-dimensional distributions of temperature, emission measure and 

optical depth for the nebula. This were done by assuming a constant line of sight-

temperature. 

In the present study an extra observation of the nebula at 2 cm is available. The 

idea is to use the extra observation to expand on the work done by Basart and Daub 

(1987) to obtain information about the temperature variation in Planetary Nebula 

NGC 7027 along the line of sight. 

To summarize, at this point, three flux density maps, observed at 2 cm, 6 cm 

and 20 cm with the VLA, are available. Each of these flux density maps are of size 

32 X 28 pixels. The goal is to use three flux density values, one from each observation 

frequency, at the same pixel location, to find the parameters describing the temper-
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ature variation and optical depth in the nebula at that specific pixel location. This 

must be done for all the pixels in the 32 x 28 pixel maps to obtain the estimated 

parameters as they vary over the whole nebula. 

2.2 Flux Density Equation 

A theoretical flux density equation, at each observation wavelength, can be ob

tained by starting with the general equation for flux density and deriving an expression 

for the observed flux density per beam for a model of the source. 

The general observed radio flux density is given by 

S = I Iu{e,(f>)PniO,<l>)dÇî (2.1) 

where 

Iu[B,4>) = frequency dependent specific intensity of radiation, 

Pn{^i'l>) = normalized antenna power pattern, 

dÇl = sinOdêd(f> = incremental solid angle, and 

0 and 4> are the standard angular spherical coordinate variables. 

Basart and Daub (1987) assumed an elliptical Gaussian form for the antenna 

beam with half power beam widths (HPBWs) of Ox and By along the two axes of 

symmetry. They used a normalized expression for this beam given by 

Pn{0, <p) = exp[-'i(ln2)e^{^^^ + ^^^-^)] (2.2) 
9x oy 

In addition, they assumed that Oj; and By «C the nebular angular diameter and 

due to the lack of a detailed nebular model, they also assumed that <f>) = Ii/, a 
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constant over angle, within the beam of the antenna. (However, lu was not assumed 

to be constant over the source.) By taking into account that Bx and By are only a 

few arc seconds at most, the approximation ainB % B can be used. 

By using all these approximations, the flux density within the synthesized beam 

is given by 

= % 

By using the usual expression, for radio frequencies, for the thermal emission 7j/, 

given by 

BUE-^^DTU = ^^"^2 LO'' ( 2.4) 

the expression for the flux is given by 

where 

S = the observed flux density, 

k = Boltzman's constant, 

Bx = half power beam width in minor axis direction. 

By = half power beam width in major axis direction, 

A = observation wavelength, 

tu = absorption from the back of the nebula to any point x along the line of sight. 
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Tu = optical depth, the total absorption from the back of the nebula to the distance 

s, and 

T = temperature in the nebula. 

In the derivation of equation (2.5) it was assumed that the optical depth is 0 

at the back of the nebula, k, 6xt 9y and A are known for each observed wavelength. 

The unknown parameters in the flux density equation are the optical depth of the 

nebula, tj/, and the parameters describing the temperature variation in the nebula, 

as a function of optical depth, and represented by the symbol T. 

2.2.1 Concept of Optical Depth 

The parameter optical depth used in the description of the nebula, is a measure 

of the absorption of the radio waves as it moves through the plasma. The more dense 

the plasma, the higher the absorption and consequently the higher the optical depth. 

The converse is also true. 

A mathematical equation for optical depth is given by 

where 

«1/ = absorption coefficient (at a specific wavelength), and 

X = distance variable 

where s is the distance from the back of the nebula to any point within the nebula 

along the line-of-sight. 

This equation therefore gives the relationship between the physical depth and the 

(2.6)  
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optical depth of the nebula. If, for instance, the absorption coefficient is a constant 

throughout the nebula at a specific wavelength, then 

(2.7) 

This indicates that if the absorption coefficient is a constant at a specific wavelength 

there exists a linear relationship between optical depth, rj/, and physical depth, s, in 

the nebula at the specific wavelength. 

A physical interpretation of optical depth is as follows. When the optical depth 

is zero, tu = 0, it is possible to see through the nebula; when the optical depth is 

infinite, rj/ = oo, it is not possible to see anything inside the nebula, only the front 

surface can be seen. Values of rj/ in between allow different observation depths of the 

nebula. 

The optical depth is a function of the wavelength used in the observation of the 

nebula. Osterbrock (1974) has shown that the optical depth at one wavelength is 

proportional to the optical depth at another wavelength. The relationship is given by 

and is the observation frequency in GigaHertz. 

The optical depth at 6 cm is chosen to be the standard from here on. All other 

optical depths will be referenced to this optical depth and the symbol used for the 

optical depth at 6 cm is TQ . Therefore 

tui  = aylTy2 (2.8) 

where 

(2.9) 
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Tp = Oj/Tg (2.10) 

where 

Ti/ = optical depth at any frequency, and 

au = constant. 

The constants relating the optical depths at 2 cm and 20 cm to the optical depth 

at 6 cm are, respectively: 

®02 ~ 0.09528 

«20 — 12.544. 

The observed flux density maps in this study are of size 32 x 28 pixels. The 

optical depth in the nebula will differ from pixel location to pixel location. Therefore, 

the optical depth, at each pixel location, is one of the unknown parameters in the flux 

density equations. As already mentioned, the optical depths at different wavelengths 

are related by a known constant. It is therefore only necessary to solve for the optical 

depth at 6 cm from the observed flux density values to have all the knowledge available 

about the optical depth behavior in the nebula. 

2.2.2 Temperature Model 

The second unknown in the flux density equations is the temperature model 

used to describe the temperature variation in the nebula as a function of optical 

depth (along the line of sight). Many different temperature models can be postu

lated. At least two parameters are necessary to define the temperature model, one to 
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describe the temperature of the nebula across the surface and the other to describe 

the temperature variation along the line of sight. The three models making most 

sense from a physical viewpoint are given in Figure 2.1. The equations describing the 

different models are also given. 

The first model assumes a temperature distribution with highest temperature 

value at the back of the nebula and an exponential decrease in temperature with a 

linear increase in optical depth. The second model has an almost similar form, but 

the decrease in temperature is linear instead of exponential with a linear increase in 

optical depth. The third model assumes that the highest temperature is in the center 

of the nebula with a linear decrease in temperature to both sides. 

Equation (2.5) can be used to obtain flux density expressions for the nebula using 

each temperature model. The flux densities, at an arbitrary wavelength, for all three 

models are given below: 

Model 1: 

5 = Ki{Tq{1 -  e-^^)+ (2.11) 

Model 2: 

5 = A'i{ro(l - - Es—_ 1 + 
tu 

(2.12) 

Model 3: 

5 = ^i{ri[e-^'^(-l - -) + e~^(1) + 1 _ 1] + ro[Ae-T,/ _ + A]} 
TU TI/ TY TY TV TI> 

(2.13) 
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Temperature Model 1; T = TQ + TJE 

T 

t 

Temperature Model 2: T = TQ -

T 

t 

Temperature Model 3: T = TQ — 

T 

ry/2 T(/ t 

Figure 2.1: Postulated temperature models 
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where 

= S 
in all three cases as before. To apply any one of the three temperature models to the 

case under investigation, the equation for the flux density using that model must be 

evaluated at all three wavelengths, 2 cm, 6 cm and 20 cm, used to observe the nebula. 

This can be done by substituting the correct value for A in each case and using the 

correct constant to relate the optical depth at the specific wavelength to the optical 

depth at 6 cm. 

As can be seen, equations (2.11), (2.12) and (2.13) are all highly nonlinear in the 

unknown parameters, rj/, TQ and Tj. In other words, at each pixel in the 32 x 28-

pixel observed flux density maps, three highly nonlinear equations, evaluated at the 

three wavelengths used as already described, are available to be solved. In the case of 

model 1, there are four unknown parameters in the three equations and in the case of 

the other two models, there are three unknown parameters. At this stage, it must be 

pointed out that there exists no physical evidence to assume that one of the possible 

temperature models is more correct than any of the others. Actually, it is hoped that 

such information can be obtained from this investigation. 

It is clear that there are four unknown parameters in the flux density equations 

obtained by using the first temperature model. Due to the fact that only three 

flux density maps, and therefore three flux density equations, are available at each 

pixel location, one of the four unknown parameters cannot be solved for in this case. 

Because not enough knowledge about the physical characteristics of the nebula are 

available to make an educated guess about one of the unknown parameters, it would 
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be best to use one of the other two models in the present investigation. It can also be 

seen that the flux density equation obtained by using temperature model 3 is much 

more complicated than the equivalent equation obtained by using temperature model 

2. This is one of the reasons why temperature model 2 will first be investigated as 

a possible model describing the temperature variation in the nebula. Temperature 

model 3 will be investigated later. 

2.3 Direct Solution 

The contour plots of the three observed flux density maps made with the VLA 

are shown in Figures 2.2, 2.3 and 2.4. The 20, 6, and 2 cm observations were made 

with the A, B and C configurations, respectively. The double peak structure, often 

observed in radio maps of planetary nebulae, with reduced brightness in the center 

can be seen in the 6 cm map of NGC 7027, but the 20 cm map has a peak slightly 

northeast of the center which has no counterpart in the 6 cm map (Basart and Daub, 

1987). The 2 cm map has the same structure as the 6 cm map with only a slightly 

higher peak flux density value of 0.263 Jy/beam instead of 0.232 Jy/beam. For more 

information on the structure of planetary nebulae, see Pottasch (1984), Aller (1984), 

the proceedings of the 131st symposium of the International Astronomical Union held 

in Mexico City (1987) and the Planetary Nebula Symposium no. 103 held in London, 

1982 (Flower 1983). 

The actual observed values for the flux densities at each pixel location, are given 

in Appendix A. By using temperature model 2 to describe the temperature variation 

in the nebula as a function of optical depth, the following three flux density equations 
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at the observed wavelengths are available to solve for the three unknown parameters: 

% = •ffl02{ro(l - ̂-"02^6) -  (2.15) 

% = - «-""G''» ) - '^!„"r6^'<°06'-6 " 1 + )}, (2-16) 

and 

«20 = A'i2o{ro(l - e-''20'6) - '^°^'(''20^6 " 1 + ^-"20^6)}. (2.17) 

The subscripts 02, 06 and 20 in these three equations refer to the wavelengths for 

which the specific equations are valid. The definitions of the rest of the parameters 

are the same as before and the meaning of the constant kiq2 for instance is that it 

is the value of the constant Ki, defined before, evaluated at 2 cm. 

The most obvious approach to solve for the three unknown parameters in the 

three highly nonlinear equations, is to algebraically solve the three equations simulta

neously at each pixel in the observed flux density maps. Due to the nonlinearity of the 

equations, ordinary linear algebra cannot be used to solve for the three unknown pa

rameters directly. The approach followed was to linearize the nonlinear equations and 

to use iterative least squares estimation to solve for the three unknown parameters. 
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Figure 2.2: Observed flux density map at 2 cm 
Peak value = 0.26316 Jy/beam 
Contour levels at 99%, 95%, 90%, 75%, 50%, 25%, 10%, 5%, 2%, 1%, 0.5% 
Scale: Each tick mark represents 0.25 seconds 
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Figure 2.3: Observed flux density map at 6 cm 
Peak value = 0.23244 Jy/beam 
Contour levels = 99%, 95%, 90%, 75%, 50%, 25%, 10%, 5%, 2%, 1%, 0.5% 
Scale: Each tick mark represents 0.25 seconds 
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Figure 2.4: Observed flux density map at 20 cm 
Peak value = 0.03984 Jy/beam 
Contour levels at 99%, 95%, 90%, 75%, 50%, 25%, 10%, 5%, 2%, 1%, 0.5% 
Scale: Each tick mark represents 0.25 seconds 
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2.3.1 Description of Approach 

The basic idea of this approach is to linearize the three nonlinear flux density 

equations with respect to the three unknown parameters. These equations must be 

linearized around a normalization point. As an example, the original flux density 

equation at 2 cm is repeated here for clarity, 

% = A-102W1 - ̂- '02^6) -  rg _ i + (2,18) 
®02^6 

or 

% = fl02{T0(l - e->'02'-6) - (Tj - TjKl - — + _i_e-»02'-6)} (2.19) 
®02^6 «02^6 

Linearizing this equation with respect to the three unknown parameters will give 

*^02 - •^02 + •'02 (2.20) 

where 

5q2 = flux density evaluated at the normalization point, and 

^02 = = LI{t2)tq + 12(^2)^1 + ^3(^2X6 

(2 .21)  

where * means linearization around the normalization point and the lowercase letters 

represent variation from the reference condition. Also 

° ^ = (2.22) 
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+  ' f m i ' i  { — 7 7 ^ 5  -  — ( 2 . 2 4 )  
«02(^6) «02(^5) ^6 

Similar expressions can be obtained for the other two wavelengths of observation. 

The problem can now be formulated in terms of the familiar linear model 

Z(fc) = H(fc)0 +V(fc) (2.25) 

where 

Z(k) = jV X 1 measurement vector, 

H(k) = iV X n observation matrix, 

0 = n X 1 parameters vector, and 

V(k) = iV X 1 measurement noise vector, as follows 

dfrgo) ^1(^20) ^2(^20) ^3(^20) (Q "(^20) 

= 
^1(^6) ^2(^5) ^3(^6) h + "(rg) 

s{t2) l \ { t2) ^2(^2) ^3(^2) . ^6 . u(r2) 

The least squares solution to this problem is given by Mendel (1987, p.19) as 

0£5(A!) = [H^(6)H(&)]-^H(6)Z(A) (2.27) 
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Because V(k) cannot be measured, it is neglected in the least squares solution. 

It must be pointed out that the solution of this equation is fraught with numerical 

difficulties, in particular the evaluation of 

(2.28) 

An example is in order. 

Example: 

The following H matrix was obtained at a specific pixel location: 

H = 

0.275920.3£? - 005 0.2199522^ - 006 0.2468661f - 005 

0.1937950^7 - 004 0.8101084£ - 005 0.2255684JF + 000 

0.2507618E - 004 0.1233902^ - 004 0.4780105^: + 000 

By using the standard procedure (single precision arithmetic) 

(2.29) 

[H'(6)H(&)] ^ = ad j iH ' i k )H{k ) )  de t { [H ' {k )H(k ) ] )  

to calculate the inversion, the following results were obtained: 

(2.30) 

H-1 = 

0.4917572E + 006 -0.4745371^7 + 005 

-0.1628728^ + 007 0.5954964 £7 + 006 

0.1624548E + 002 -0.1288233E + 002 

0.2239052E + 005 

-0.2810008£7 + 006 

0.8168208E + 001 

(2.31) 

The correct solution as calculated by using an HP 41 C calculator equipped with 

a math-pack, is given by 
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0.4924199E + 006 -0.4752298f + 005 0.2242308E + 005 

= -0.1630930E 4- 007 0.5962995£/ +006 -0.2813794f + 006 (2.32) 

0.1626756E + 002 -0.1289942E + 002 0.8179027E + 001 

This solution was verified by calculating and to five significant digits the 

result agreed with the identity matrix. 

It can be seen that the standard procedure results in values that are on the 

average 0.13% too low in this example. 

A much better approach to invert the given H matrix is to use the method of 

LU Decomposition. This method, also using single precision arithmetic, results in 

the following inverse matrix: 

H-1 = 

0.4923947E + 006 -0.4751427E + 005 0.22420761: + 005 

-0.1630840E + 007 0.5962703£: +006 -0.2813663f; + 006 (2.33) 

0.1626654E -t- 002 -0.1289907^; + 002 0.8178872£; + 001 

These values are on the average 0.0066% lower than the correct values, quite an 

improvement over the standard procedure. The LU Decomposition method, using 

double precision arithmetic, results in the following inverse matrix: 

= 

0.4924198f; + 006 -0.4752294E + 005 0.2242306^ + 005 

-0.1630929J? + 007 0.5962992E + 006 -0.2813793£; + 006 

0.1626754i; + 002 -0.1289941E + 002 0.8179023^ + 001 

These values are on the average 0.0007% lower than the correct values. 

(2.34) 
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One of the reasons for the numerical difficulties is because the data values in the 

original matrix differ by as much as 6 orders of magnitude. The interested reader is 

referred to an article by Laub (1985) on this topic. 

It was decided to use the method of LU Decomposition as given in Numerical 

Recipes (Press et al., 1986) and double precision arithmetic to handle all the numerical 

work in this dissertation. 

The normalization point for the first iteration can be calculated by using knowl

edge about the physical characteristics of the nebula to make certain approximations 

in the different observed flux density equations. It is known that the nebula is op

tically thick at 20 cm and optically thin at 2 cm. What is meant by this is that at 

20 cm 

It was found that the iterative least squares approach is very sensitive in how 

close the first normalization point is to the actual solution. When both the above ap

proximations were used to find this point, it turned out that the approach is unstable 

at many pixel locations because the normalized values were not close enough to the 

actual solutions. In the end only the approximation in equation (2.35) was used. 

Taking this approximation into account, the flux density equation at this wave

length can be simplified as follows 

rj/ > 1 (2.35) 

while at 2 cm 

Ti/ < 1 (2.36) 

520 ^ ki2o{t i{ l  (2.37) 
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Substituting this expression in the other two expressions, the unknown parame

ters can be solved for uniquely. 

These approximate values were used as the normalization values in the first 

step of the iterative least squares approach. The new solutions were used as the 

normalization values in the second step and so forth. It was found that the approach 

converged after the third or fourth iteration to the correct solution at all the pixels 

in the 32 x 28 pixel maps. 

2.4 Results of Direct Approach 

The numerical solutions for the three unknown parameters in the three nonlinear 

equations could be found very accurately at all the pixel locations in the 32 x 28 

observed maps by using the above approach. This was verified by using the estimated 

values for TQ, Tj and rg in the three flux density equations at the three observed 

wavelengths at each pixel location to calculate the original values of the observed flux 

density values. However, one problem with the estimated parameters was that they 

were not acceptable at many of the pixel locations. The reason why they could not 

be accepted was because the estimated parameters were not physically possible. It is 

known from general radio astronomy theory and previous studies done on this nebula, 

that the total temperature (as given by the postulated temperature model), as well as 

the optical depth for this whole nebula, must be within certain bounds. For example, 

it is obvious that the total temperature at no pixel location can be negative. It is 

also known that the optical depth over the whole nebula varies between 0.2 and 5.0. 

These constraints were broken by the solutions obtained at many of the pixels using 
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the direct approach. 

The reason the solutions are not physically acceptable at many of the pixels in 

the observed flux density maps can be contributed to inaccuracies in the observed 

flux density values. These inaccuracies were already discussed in detail in Chapter 1. 

2.5 Alternative Approach 

One possible approach to take the inaccuracies in the observed flux density values 

into account and to find an acceptable solution at each pixel in the observed flux 

density maps for the unknown parameters, is to let the observed flux density values 

at each pixel vary with an amount that seems to be a reasonable estimate for the 

inaccuracies. This amount was chosen to be ±10% of the observed flux density values 

at each pixel in each of the three observed flux density maps at the three different 

wavelengths. The new approach was then to solve for the unknown parameters, using 

the direct solution discussed above, at each pixel using all the possible flux density 

values in all three flux density maps at the specific pixel location. This situation is 

depicted graphically in Figure 2.5. 

The idea behind this approach was the following: as the flux density values at 

each pixel location in all three flux density maps, approach their "true" values, it was 

expected that acceptable solutions would be obtained that were the actual correct 

solutions. Further it was expected that as the flux density values diverge from their 

"true" values, the estimated parameters would vary only a small amount around their 

correct values while large variations from the "true" values of the flux density would 

result in nonphysical solutions. If this assumption was true, it would be easy to find 
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the "correct" estimated parameters at each pixel location. 

A 
20cm 6cm 2cm 

Figure 2.5: Spectrum of flux density variation approach 

It turned out that this approach was not the solution to the problem. When the 

flux density values at each pixel location in all three flux density maps were varied in 

steps of 2%, there were 11^ solutions possible at each pixel location. Although many 

of the solutions could be rejected because they were not physically acceptable, the 

rest were all physically acceptable but they did not vary around the "correct" value as 

expected. They spanned the whole range of acceptable values at each pixel location 

and there was no way to choose the "correct" solution from all the possibilities. 

Although this method did not provide a solution to the main problem, it provides 

important information about the behavior of the estimated parameters. It was found 

that the estimated parameters were very sensitive to small changes in the flux density 

values used to solve for these parameters. This sensitivity will be further investigated 

in the next chapter. 
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3. DOUBLE SMOOTHING APPROACH 

3.1 Simulation Study 

In the previous chapter it was discovered that the estimated parameters are very 

sensitive to inaccuracies in the observed flux density values. To investigate exactly 

how sensitive, a thorough simulation study was undertaken. The approach was as 

follows: 

1. Two temperature maps and one optical depth map, each of size 32 x 28 pixels, 

were simulated. The values for the unknown parameters in these maps were 

chosen according to the expected values for these parameters as obtained by 

the 2-D study by Basart and Daub (1987). The derived maps for temperature 

and optical depth, obtained by Basart and Daub (1987) for the 2-D case, are 

shown in Figures 3.1 and 3.2. The simulated maps are shown in Figures 3.3, 

3.4 and 3.5. 

2. The simulated temperature maps and optical depth map were used to obtain 

three simulated flux density maps, at 2 cm, 6 cm and 20 cm. The values of the 

flux densities at each pixel in the 32 x 28 pixel maps were calculated using the 

same formula as derived in Chapter 2. 
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Figure 3.1: 

Figure 3.2: 

2-D derived temperature map for NGC 7027 by Basart and Daub (1987), 
temperature contours start at 9 000 K and increment by 500 K 
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2-D derived optical depth map for NGC 7027 by Basart and Daub ( 1987), 
optical depth contours start at 0.2 and increment by 0.1 
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Maximum value = 15 000 K 
Ground level value = 0 K 

Figure 3.3: Tq simulated map 

Maximum value = 5 000 K 
Ground level value = 0 K 

Figure 3.4: simulated map 

Maximum value = 1.4 
Ground level value = 0.0 

Figure 3.5: Tg simulated map 
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S = Kie"^^ Te^di (3.1) 

where 

S is the flux density, 

A'j = constant, 

Tf/ = optical depth, and 

T is the temperature model used. 

The temperature model used in the simulation study was the same model pos

tulated in Chapter 2 namely 

The simulated flux density maps are shown in Figures 3.6, 3.7 and 3.8. 

3. Zero mean white Gaussian noise with a standard deviation of 10% of the flux 

density value at the individual pixels was added to each pixel in all three flux 

density maps. The new flux density maps with the noise added will be referred 

to as the "noisy" flux density maps and are shown in Figures 3.9, 3.10 and 3.11. 

4. The "noisy" flux density maps were used to estimate the original two tempera

ture parameters and the optical depth parameter. These estimated parameters 

were then compared with the actual temperature and optical depth parameters 

used in the simulation to find exactly how sensitive the estimated parameters 

were to inaccuracies in the flux density values. 

(3.2) 
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Maximum value = 0.3210 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 3.6: Simulated flux density map at 2 cm 

Maximum value = 0.1920 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 3.7: Simulated flux density map at 6 cm 

Maximum value = 0.0149 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 3.8: Simulated flux density map at 20 cm 
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Maximum value = 0.3950 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 3.9: Noisy flux density image at 2 cm 

Maximum value = 0.2290 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 3.10: Noisy flux density image at 6 cm 

Maximum value = 0.0183 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 3.11: Noisy flux density image at 20 cm 
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3.2 Simulation Results 

Simulated noisy flux density maps were generated for three different situations. 

In the first case, 0% noise was added to each pixel in the three generated flux density 

maps, in the second case zero mean white Gaussian noise with a standard deviation 

of 5% of the individual pixel values was added to each pixel of the three flux density 

maps and in the third case zero mean white Gaussian noise with a standard deviation 

of 10% of the individual pixel values was added to each pixel in the three flux density 

maps. Each of the three sets of noisy flux density maps was used to estimate the 

parameters Tg, Tj and rg at each pixel. The results are displayed as follows: Cuts 

were made through the estimated parameter maps at different rows for each of the 

noise situations discussed before. The results at the same row for all three cases were 

superimposed on one figure. The results for row 2 and row 16 were typical of the 

results for all the rows and were arbitrarily chosen to be displayed here for all three 

estimated parameters. These results are shown in Figures 3.12, 3.13, 3,14, 3.15, 3.16 

and 3.17. 

From these figures it can be seen that the estimated parameters Tg, Tj and rg 

have similar behavior in each of the situations discussed above. In the case of 0% 

noise added to the original simulated flux density maps, the estimated parameters at 

each pixel location are exactly the same as the original parameters used to generate 

the flux density maps. Both these curves are labelled "0% noise" in Figures 3.12, 

3.13, 3.14, 3.15, 3.16 and 3.17 and can be used as a reference curve. 
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TO ESTIMATE - ROW 2 
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Figure 3.12: Cut through row 2 of Tq maps with different amounts of noise 
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TO ESTIMATE - R0W1B 
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Figure 3.13: Cut through row 16 of Tg maps with different amounts of noise 
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T1 ESTIMATE - R0W2 
(SimnJkTED DATA) 
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1 2 3 4 5 6 7 8 9 10111213 14 IS 16 17 IS 1920 21 22 23 24 2B 26 27 28 
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Figure 3.14: Cut through row 2 of T, maps with different amounts of noise 

T1 ESTIMATE - R0W16 
(SINDLATED DATA) 

-2 -t—I—I—I—I—I—I—I—I—I—1—I—I—I—I—1—I—I—I—I—I—I—I—I—I—I—r-
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+ 5% NOISE o 10% NOISE 

Figure 3.15: Cut through row 16 of T, maps with different amounts of noise 
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TG ESTIMATE - R0W2 
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Figure 3.16: Cut through row 2 of T, maps with different amounts of noise 
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Figure 3.17: Cut through row 16 of Xg maps with different amounts of noise 
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These three figures also show that even a small amount of noise can result in 

estimated parameters that differ significantly from their true values as displayed by 

the curves labelled "5% noise". These curves show the estimated parameters in the 

situation when 5% zero mean white Gaussian noise, as discussed before, was added 

to the simulated flux density maps. The curves labelled "10% noise" show the results 

obtained when 10% zero mean white Gaussian noise, as discussed before, was added 

to the original flux density maps. These curves deviate further from the reference 

curve compared to the 5% noise curves, as expected, because the flux density values 

were more noisy in this case. 

The true amount of inaccuracy in the observed  flux densities is unknown, but it 

can be as high as 30%. With such large errors, it is obvious from the simulation study 

that something must be done to reduce these inaccuracies or the estimated parameter 

values, using the observed flux density values, will be almost worthless. 

3.3 Double Smoothing Technique 

In an attempt to improve the estimated parameters, a 3 x 3 smoothing running 

window was used to smooth the estimated parameter maps. The weight assigned to 

each cell in the 3x3 running window was exactly the same, 1/9. The boundary ceils 

were handled by assigning 0 values to all of them. Cuts were again made through 

the estimated parameter maps at the same rows as before. Only the results for the 

10% noise case are shown in Figures 3.18, 3.19, 3.20, 3.21, 3.22 and 3.23. It can 

be seen that the smoothed estimated parameters, labelled by the curves "10% Noise 

Smoothed", approach the original values much more closely. 
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TO ESTIMATE - ROW 2 
(SIHULATZD DATA) 
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Figure 3.18: Cut through row 2 of Tq maps with smoothed estimated param
eters 

TO ESTIMATE - R0W16 
(SIHDUTED DATA) 
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Figure 3.19: Cut through row 16 of TQ maps with smoothed estimated param
eters 
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T1 ESTIMATE - R0W2 
(SinULAnD DATA) 
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Figure 3.20: Cut through row 2 of T, maps with smoothed estimated param
eters 
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Figure 3.21: Cut through row 16 of maps with smoothed estimated param
eters 
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T6 ESTIMATE - R0W2 
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Figure 3.22: Cut through row 2 of Tg maps with smoothed estimated param 
eters 
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Figure 3.23: Cut through row 16 of Tg maps with smoothed estimated param
eters 
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The other two curves have the same definitions as before. It is difficult to assign 

an error measure for each parameter in this case, because the nominal value of each 

parameter varies from pixel-to-pixel. Error measures as a function of different nominal 

values for each parameter will be calculated in Chapter 4 using a Monte Carlo analysis. 

In an attempt to find the best possible estimated parameters, using the noisy flux 

density values, three different methods were tried (in each of the following situations, 

the same weight was assigned to each pixel in the 3x3 smoothing running window, 

namely 1/9; boundary cells were assigned 0 values): 

1. The first approach was to use a 3 x 3 smoothing running window to smooth 

the estimated parameter maps as already discussed. In this situation it was 

assumed that the estimated parameters were laying on a smooth surface and 

neighboring pixel values were of the same order. The effect of the smoothing 

window would be to reduce any noise effects in the estimated parameters. 

2. The second approach was to use a 3 x 3 smoothing running window to smooth 

the "noisy" flux density maps, after the 10% zero mean white Gaussian noise was 

added. These smoothed "noisy" flux density maps were then used to estimate 

the unknown parameters. The same reasoning was followed in this case. It 

was assumed that the flux density values at neighbor pixels were of the same 

order and that the smoothing window would reduce any noise effects in the flux 

dens i ty  va lues .  This  i s  a  val id  assumpt ion  to  make  in  the  case  of  the  observed  

flux density maps as can be seen from the individual observed flux density values 

at all pixels given in the appendix as well as the observed contour maps shown 

in Figures 2.2, 2.3 and 2.4. 
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3. The third approach was to combine approaches 1 and 2. The flux density maps 

were smoothed before estimating the unknown parameters and this was followed 

by a smoothing of the estimated parameter maps themselves. 

Although smoothing reduces the angular resolution of the maps, it is more important 

to reduce errors in the estimation than to retain the original resolution. 

Cuts were again made through all the estimated parameter maps at the same 

rows as before, after applying the different approaches, and the results are shown 

in Figures 3.24, 3.25, 3.26, 3.27, 3.28 and 3.29. The curves labelled "0% noise" are 

again the reference curves, the curves labelled "Smoothed Temp" show the estimated 

parameters when the 3x3 running window was used to smooth the parameters esti

mated from the noisy flux density maps. The curves labelled "Smoothed Flux" show 

the parameters estimated when only the noisy flux density values were smoothed. The 

results of smoothing both the noisy flux density values and the estimated parameters 

are shown by the curves labelled "Smoothed Flux & Temp". 

The calculation of the amount of noise in the estimated parameters is referred 

to the next chapter, where it will be done using a Monte Carlo analysis. However, it 

is clear from Figures 3.24 to 3.29 that smoothing of the estimated parameter maps 

improve the results in the sense that the estimated parameters are closer to their 

original values. Smoothing of the "noisy" flux density maps results in estimated 

parameters that are even better while the most accurate results were obtained by 

smoothing both the "noisy" flux density maps as well as the estimated parameter 

maps. This last technique will be referred to as the double smoothing technique from 

here on. 
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Figure 3.24: Cut through row 2 of Tq maps with smoothed noise and smoothed 
estimated parameters 
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Figure 3.25; Cut through row 16 of TQ maps with smoothed noise and 
smoothed estimated parameters 
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Figure 3.26: Cut through row 2 of T, maps with smoothed noise and smoothed 
estimated parameters 
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Figure 3.27: Cut through row 16 of T, maps with smoothed noise and 
smoothed estimated parameters 
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Figure 3.28: Cut through row 2 of maps with smoothed noise and smoothed 
estimated parameters 
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Figure 3.29: Cut through row 16 of Tg maps with smoothed noise and 
smoothed estimated parameters 
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3.4 Application of the Double Smoothing Technique to the Observed 

Flux Density Values 

In the development of the double smoothing technique to estimate parameters 

in the noisy simulated flux density maps, it was assumed that both the flux density 

values and the estimated parameters lay on a smooth 2-D surface. When interpreting 

the results of the double smoothing technique as applied to the observed flux density 

values, these assumptions must be kept in mind. As a general rule, it can be expected 

that the edges in the estimated parameter maps are smoother than they are in reality. 

The double smoothing technique was then applied to the actual observed flux density 

maps. Three dimensional and contour plots of the estimated parameters are shown 

in Figures 3.30, 3.31, 3.32, 3.33, 3.34 and 3.35. 

3.4.1 Optical Depth rg-map 

Comparing the estimated map for the optical depth at 6 cm, Figures 3.34 and 

3.35, with the map for the same parameter obtained by Basart and Daub (1987), 

Figure 3.2, it can be seen that both have the same basic double peak structure with 

reduced optical depth in the center. However, the maximum optical depth found by 

the present investigation is 2.39 compared with a value of 1.0 obtained by Basart and 

Daub (1987). The estimated parameters in the present situation are very sensitive to 

errors in the flux density values, as already established. Therefore, differences in the 

obtained numerical values can be expected, but the fact that the basic structures in 

the two maps for rg are the same, suggests that the temperature model used, seems 

to apply to the nebula under investigation. 
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Maximum value - 45300 K 
Minimum value = -8870 K 

Figure 3.30: Tq estimated parameter 3-D map using observed data 

Peak value = 45300 K 
Contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Figure 3.31: TQ estimated parameter contour map using observed data 
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Maximum value = 15000 K 
Ground level value = 0 K 

Figure 3.32: T, estimated parameter 3-D map using observed data 

Peak value = 15000 K, 
contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Figure 3.33: T, estimated parameter contour map using observed data 
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Maximum value = 2.39 
Ground level value = 0.0 

Figure 3.34: t, estimated parameter 3-D map using observed data 

Peak value = 2.39 
contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Figure 3.35: tg estimated parameter contour map using observed data 
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3.4.2 Temperature Maps 

Basart and Daub (1987) assumed a constant temperature along the line of sight 

and therefore derived only one temperature map, shown in Figure 3.1. A comparison 

of this temperature map with the temperature map obtained in the present study 

for the temperature at the front of the nebula, Tj, Figures 3.32 and 3.33, shows a 

correspondence that is remarkable. Not only do both have the same structure, the 

maximum temperature obtained by Basart and Daub (1987) was 15 000 K, exactly the 

same as the maximum temperature obtained by the present investigation, 15 000 K. 

The structures of the two temperature maps obtained using the different approaches 

are also comparable. Both have a high temperature spot in the north east corner 

of the maps with a relative flat temperature profile for the rest of the surface. The 

temperature at the back of the nebula, TQ, Figures 3.30 and 3.31, can obviously 

not be compared with the previous results. However, the symmetrical structure is 

encouraging because it has the same form as the flux density maps obtained for the 

nebula at low values of optical depth. The regions of negative temperature, in the 

center of the map, are not physical possible. The most logical explanation for this 

characteristic would be to blame it on the uncertainties in flux density values and 

assume zero temperatures for this region. 

3.5 Effect of a Different Smoothing Window 

The same parameters were also estimated using a different window size, 5 x 5, in 

the double smoothing approach. In this case the weight assigned to each cell in the 

running window was 1/25. 
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The resulting temperature and optical depth maps are shown in Figures 3.36, 

3.37, 3.38, 3.39, 3.40 and 3.41. These maps have basically similar structures as 

the maps obtained using the 3x3 running window, shown in Figures 3.30 to 3.35. 

However, there are some small differences between the two sets of maps. The most 

important difference is that the fg-map obtained using the 5x5 running window, 

shown in Figures 3.40 and 3.41, is less symmetric than the rg-map obtained using 

the 3x3 running window shown in Figures 3.34 and 3.35, and the region of lower 

optical depth in the center of the rg-map is now absent. Another difference is that 

the two peaks in the TQ temperature map in Figures 3.30 and 3.31, now have different 

maximum values, as shown in Figures 3.36 and 3.37. 

The numerical values obtained using the two different methods, however, differ 

by large margins. These differences are the largest for the maximum temperature 

value at the back of the nebula which is now 33 600 K instead of 45 300 K and the 

optical depth which now has a maximum value of 1.91 instead of 2.39 before. 

All these differences can be explained by the fact that more smoothing was 

applied to the original observed flux density values using the 5 x 5 smoothing window 

than is the case using the 3x3 smoothing window, keeping in mind the sensitivity 

of the estimated parameters on the values of the flux densities used in the estimation 

procedure. 

There is obviously no hard and fast rule in choosing one of the two sets of maps 

as more correct than the other. However, by using the 5x5 smoothing window, more 

d e t a i l e d  i n f o r m a t i o n  a b o u t  t h e  f i n e  s t r u c t u r e  i n  t h e  n e b u l a  i s  l o s t  t h a n  u s i n g  t h e  3 x 3  

window. 
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Maximum value = 33600 K 
Minimum value = 8360 K 

Figure 3.36: To estimated parameter 3-D map using observed data, 5x5 
smoothing window used 

Peak value = 33600 K 
contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Figure 3.37; Tq estimated parameter contour map using observed data, 5x5 
smoothing window used 
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Maximum value = 14400 K 
Ground level value = 0 K 

Figure 3.38: T, estimated parameter 3-D map using observed data, 5x5 
smoothing window used 

* ' • ' « . 

Peak value = 14400 K 
Contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Figure 3.39: estimated parameter contour map using observed data, 5x5 
smoothing window used 
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Maximum value - 1.91 
Ground level value = 0.0 

Figure 3.40: estimated parameter 3-D map using observed data, 5x5 
smoothing window used 

Peak value = 1.91 
Contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Figure 3.41: tg estimated parameter contour map using observed data, 5x5 
smoothing window used 
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Also, the assumption that the actual flux density values observed from the nebula 

stays constant over a 5 x 5 window, is too extreme. Therefore, the results of the double 

smoothing technique, using the 3x3 smoothing running window will be used in future 

references, because no physical insight was gained by using the larger smoothing 

window. 
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4. STATISTICAL ANALYSIS 

4.1 Introduction 

A summary of the double smoothing technique, as discussed in Chapter 3, to es

timate the two temperature parameters, Tq and TJ, and the optical depth parameter, 

rg, from the observed flux density maps, is as follows (the 3x3 smoothing running 

window used, from here on, assigns the same weight, 1/9, to each cell): 

1. Smooth each of the three original observed flux density maps using the 3x3 

running window. 

2. Use linear estimation theory to estimate the three unknown parameters in the 

three highly nonlinear equations describing the flux densities at the three ob

served wavelengths as discussed in Section 2.3.1. These three nonlinear equa

tions are given by equations (2.15), (2.16) and (2.17). The smoothed flux density 

values are used in the estimation of the unknown parameters and the estimation 

is done on a pixel-to-pixel basis. 

3. Smooth the estimated parameters Ig, Ti and rg using the 3x3 running window. 

Two statistical aspects of the above procedure deserves further attention: 



www.manaraa.com

63 

1. The determination of the variance of the estimated parameters from a knowledge 

of the variance of the observed flux densities. 

2. How much the smoothing of the observed flux density values and the smoothing 

of the estimated parameters reduce the variance of the estimated parameters as 

compared to the case when no smoothing is used. 

4.2 Variance of Estimated Parameters 

The flux density equation, using temperature model 2, is given by 

S = A'i{To(l - e-®^6) - _ i + g-^re)} (4.1) 

where 

a = 0.09528 at 2 cm, 

a = 1.0000 at 6 cm, and 

a = 12.544 at 20 cm. 

Theoretically there are four methods to determine the probability distribution 

of a system given the probability distributions of the system components. 

1. The Transformation of Variables. 

2. Application of the Central Limit Theorem for Linear Systems. 

3. Generation of System Moments, 

4. Monte Carlo Simulation. 
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4.2.1 The Transformation of Variables 

4.2.1.1 Method Description Only the case of three equations in three un

knowns (as applicable to the problem under consideration) is discussed. 

Let the three equations be given by 

i/1 = «i(®1»«2'®3) (4.2) 

2/2 = M2(®1'®2»®3) (4.3) 

^3 = U3(®l,a:2>®3) (4.4) 

and let /(xj, «2, zg) be the value of the joint probability density of the continuous 

random variables Xi, Xg and X3 at (xj, X2^ zg). Under the constraint that the 

functions given by y2 and 1/3 are partially differentiable with respect to X2 

and zg and the constraint that there exists a one-to-one transformation for all values 

within the range of xj, Xg and X3 for which /(®i, Z2» ®3) ^ 0, it is possible for 

these values of , «2 ^.nd zg to solve for Z2 ®3 uniquely from the equations 

for yi, y2 and yg to get 

zi = u;i(t/i,2/2,2/3) (4.5) 

"^2 = W2(2/i,(/2,!/3) (4.6) 

®3 = ^3(2/1,2/2,2/3) (4.7) 

The joint probability density for yi = «^(xi, Xg, X3) ,  yg = «2(*i' xg, X3)  and 

ys = %3(xi, xg, X3) is then given by (Freund and Walpole, 1987, p. 257) 
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5(^1.2/2.2/3) = /kl(2/l.2/2,2/3)'(^2(2/1,2/2*2/3% W3(2/l,%/2«2/3)]l^l (4.8) 

where J is called the Jacobian of the transformation and is given by 

dx-\ dx-\ dxy 
W ^ ̂  

4.2.1.2 Application of Method In the problem under consideration it is 

assumed that the probability distributions of the observed flux densities (yj, and 

Î/3) are known and it required to obtain the probability distributions of the unknown 

parameters (ij, zg and 13). 

To be able to apply this method it is necessary to solve for 12 and Z3 (Tq. 

Ti and rg). This requires that zj, X2 and 33 be uniquely solved for in terms of j/j, 

y2 and (5o2. *5'o6 and 5'2o). Due to the nonlinearity of the equations involved this 

is not possible, especially for rg, and therefore this method is not applicable to the 

problem under consideration. 

4.2.2 Application of the Central Limit Theorem for Linear Systems 

4.2.2.1 Method Description Given that Z]i, rg, xn are independent 

observations from distributions with finite mean and variance, according to the central 

limit theorem, the average of these observations approaches a normal distribution as 

the number of observations increase. This is also true for the sum of independent 

variables. 
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Let xj, X2, be random variables. The expected value of the sum of these 

random variables is given by 

E{xi + x'2 + X3 + ... + xn) = + ... + E{xn) = (4.10) 

If the variables are also uncorrelated, their variances are given by 

Var(x i  +  X2i- . . .  +  xn)  =  VaT{xi )  +  V'ar(®2)  +  • •  •  +  Var{xn)  = (4.11) 

Knowing the mean and the variance <7^, the normal distribution is completely 

known. 

4.2.2.2 Application of Method This approach is also not applicable to the 

case under consideration because none of the unknown parameters is a linear sum of 

the observed flux densities. Even if the unknown parameters were a linear sum of 

the observed flux densities, it would not be correct to assume that the central limit 

theorem applied to the case when only three random variables are used. 

4.2.3 Generation of System Moments 

4.2.3.1 Method Description The following notation will be used in this 

section (Hahn and Shapiro, 1967): 

E{xi )  = mean of i  the component variable, 

= k  the central moment of i  the component variable, 

E{y)  =  mean of system output, and 

Uk{y) = A the central moment of system output. 
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It will also be assumed that the equation describing the system behavior is given 

by 

y = h{xi,x2,. . . ,xn) (4.12) 

where zg* •••>•"71 are the components contributing to the system output and 

are called component variables. The objective of this method is to find equations 

describing the mean of the system output [E(y)) and the second, third and fourth 

central moments of the system output (uf^ly) for fc = 2, 3, 4) given: 

1. The system transfer function h{xi,X2,";Xn)' 

2. The system component data. These data must then be used to calculate the 

mean (E(x^}) and central moments (u^,(x^)) of each of the component variables. 

Hahn and Shapiro (1967, p. 229) had shown that, assuming that the component 

variables are uncorrected, the expression for the mean of the system output, retaining 

terms up to second order, is given by 

1  d ^ k  E ( y )  =  h [ E ( x i ) , E ( x 2 ) , . . . , E ( x n ) ]  +  - ^ V a r i x i )  (4.13) 

where d^h/dx^ = d^hjdx^ evaluated at the mean value E(x.i), and 

Variy) =  E  ( ^ )  Var(xi)+ ^  {^){^)u^{xi) ~  ^  ( ^ )  V a r ( . r , - ) -
2=1  i= l  i=l 

(4.14) 
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4.2.3.2 Application of Method To be able to apply this method to the 

problem under consideration, the unknown parameters, TQ, and rg, must each be 

solved for in terms of the observed flux densities at 2 cm, 6 cm and 20 cm. As already 

seen, this is not possible. Therefore this method is not applicable to the problem 

under consideration. 

4.2.4 Monte Carlo Simulation 

4.2.4.1 Method Description This method requires only that the distribu

tions of all the system component variables be known. If this is the case, the distribu

tion of the system output can be calculated by computer simulations of many systems 

using values for the system components obtained from the component distributions. 

The steps in this procedure would be as follows: 

1. Find and mathematically describe the statistical distribution for each compo

nent variable. 

2. For each system component, select a random value from the corresponding 

component distributions. 

3. Use these values of the system components to calculate a value of the system 

output. 

Repeat steps 2 and 3 as many times as necessary. 

4. Use the resulting values of the system output to get an approximation of the 

system distribution. 
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4.2.4.2 Confidence Level The Monte Carlo simulation is a statistical pro

cedure. Therefore, any estimate of the system output calculated using this procedure, 

will have a certain confidence level. In general, by increasing the number of trials, 

the errors in the estimates can be reduced and the confidence level be increased. 

The number of trials required to obtain a specified confidence level can be cal

culated using the following expression under certain restrictions^ 

" = ^^"P^^l-a/2 

where 

n is the number of trials required, 

E is the maximum allowable error in estimating p, 

p is the parameter of a binomial distribution, 

p' is the initial estimate of p, and 

•^1—a/2 ~ ^ ~ a/2 percent point of standard normal distribution. 

A problem in using this equation is that it requires an initial estimate of p, the 

quantity to be determined by the Monte Carlo simulation. This problem can be 

solved by using a worst case scenario and assume p = 0.5. This will result in the 

largest possible number of trials needed to obtain a specified confidence level. 

To be able to estimate the variance of the estimated parameters with a 95% 

confidence level, the number of trials needed is given by 

^This equation is based on the normal approximation to the binomial distribution. 
The restrictions are that neither np or n(l -p) is less than 5. [from Hahn and Shapiro, 
1967]. 
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n = (0'5)(0.5) 2 ^ 384 (4.16) 
(0.05)2 

It is interesting to note that a 99% confidence level, under the worst case scenario, 

would require 16641 trials. 

4.2.4.3 Application of Method This method is directly applicable to the 

problem under consideration. (It is assumed that the corrupting noise in the observed 

flux densities is white Gaussian noise.) To find the relationship between the noise in 

the observed flux densities and the resulting errors in the estimated parameters, use 

the following method: 

1. Choose values for Ig» ^1 rg in the expected ranges of these variables, as 

already discussed. These values will also be referred to as the nominal values. 

2. Calculate the flux densities at the three wavelengths used, 2 cm, 6 cm and 20 cm 

using the nominal values of Tq, Tj and rg and the given flux density equations. 

3. Add zero mean white Gaussian noise with a specified variance to the simulated 

flux densities. 

Repeat this 384 times to get 384 sets of noise corrupted flux densities for each 

set of nominal parameters chosen. 

4. Solve 384 times for the values of Tg, and rg from the 384 sets of noise 

corrupted flux densities. 

5. Calculate the variance of TQ, TJ and rg from all the solutions obtained in steps 

3 and 4. 
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6. Repeat this procedure for different sets of nominal values. 

4.2.4.4 Experimental Results The above procedure was followed to obtain 

the standard deviation of the estimated parameters for a nominal value of TQ = 10000 

K and varying nominal values of and TQ. It was assumed that zero mean white 

Gaussian noise with a standard deviation of 5% of the nominal value of the flux 

densities was added to the calculated flux densities in each case. 

Figure 4.1 shows the standard deviation of parameter TQ as a function of the 

nominal values of parameters Tj and TQ, TQ = 10000 K. These values are expressed 

as percentages of the nominal values used for the different parameters. It is quite 

clear that even a 5% standard deviation in the values of the observed flux densities 

can result in enormous errors in the value of estimated parameter TQ. It can further 

be seen that the standard deviation of the estimated TQ parameter increases as the 

nominal value of parameter rg decrease and as the nominal value of parameter 

increases. 

Figure 4.2 shows the standard deviation of parameter Tj as a function of the 

nominal values of parameters TI and TQ, TQ = 10000 K. These values are expressed 

as percentages of the nominal values. It is again clear that a 5% standard deviation 

in the values of the observed flux densities can result in large errors in the values 

of estimated parameter Tj, although these errors are smaller than the errors for 

estimated parameter TQ. The standard deviation of the estimated parameter T^ is 

not very sensitive to the nominal value of parameter , but increases as the nominal 

value of parameter rg decreases. 
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144% 

80% 

46% 

To nominal = 10000 K 

Figure 4.1: Standard deviation of parameter Tq estimated directly from noisy 
simulated flux density values 

65% 

28% 

6% 

I I r I I 

To nominal = 10000 K 

Figure 4.2: Standard deviation of parameter T, estimated directly &om noisy 
simulated flux density values 
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85% 

To nominal = 10000 K 

23% 

Figure 4.3: Standard deviation of parameter Tg estimated directly û-om noisy 
simulated flux density values 

Figure 4.3 shows the standard deviation of parameter rg as a function of the 

nominal values for parameters TI and rg, TQ = 10000 K. These values are also 

expressed as percentages of the nominal values. It is again clear that a 5% standard 

deviation in the values of the observed flux densities can result in large errors in the 

values of estimated parameter TQ. The standard deviation of parameter Tg is less 

sensitive to changes in the values of parameter Ti than it is to changes in the value 

of parameter rg; it increases quite rapidly as parameter rg decreases. 
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4.3 Double Smoothing Statistical Analysis 

4.3.1 Flux Smoothing 

A mathematical description of the flux smoothing (3x3 window) operation is 

given by 

flux density at pixel ( i j ) .  

4.3.1.1 Assumption By investigation of the observed flux density maps it 

is clear that the variation in flux density over the entire map, at all three frequencies, 

are slow enough that the smoothing operation provides a good approximation of the 

average value of the flux density at each pixel, By assuming that the observed 

flux density at each pixel consists of signal plus zero mean white Gaussian noise with 

a variance of <r^, the variance of the noise at each pixel after smoothing operation 

will be given by <t^/9. 

4.3.2 Parameter Smoothing 

A mathematical description of the parameter smoothing (3x3 window) operation 

is given by 

(4.17) 

where S{ i , j )  is the observed flux density at pixel ( i , j )  and S( i , j )  is the smoothed 

9.0 
(4.18) 
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where 

T{ i , j )  = estimated parameter at pixel (i,;), and 

f'(z, j) = smoothed estimated parameter at pixel 

Due to the operation of the flux smoothing, the estimated parameters at the 

individual pixels are no longer statistically independent. The Monte Carlo method 

was again chosen to And the variances. It was found that the standard deviation 

of the estimated parameters using the double smoothing technique have exactly the 

same behavior shown in Figures 4.1, 4.2 and 4.3. The only exception was the actual 

numerical values of the standard deviations, which were reduced by a factor of ±4. 

The reason for the similar behavior can be contributed to the fact that the same 

white noise sequence was used to obtain the noisy flux density values used in the 

double smoothing technique as the white noise sequence used to obtain the noisy flux 

density values in the original parameter estimation problem. Although the double 

smoothing technique reduces the standard deviation of all three estimated parameters 

by a factor of ±4, the constraint that neighbor pixel values have flux density values 

of the same order, must be kept in mind. The double smoothing technique cannot be 

applied when there is no or low statistical dependency between neighbor pixel values. 

4.4 Conclusion 

The statistical analysis in this chapter reveals that the standard deviation of the 

estimated parameters using the double smoothing technique are lower by a factor 

of ±4 than the standard deviation of the parameters estimated directly from the 

noisy flux density values. However, the standard deviations of the double smoothing 
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estimated parameters are still very large, keeping in mind that only 5% noise was 

added to the simulated flux density values. These errors must be kept in mind when 

interpreting the parameters estimated from the observed flux density values. 
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5. IMAGE RESTORATION 

5.1 Introduction 

Although the double smoothing technique, as defined in Chapter 3, gives ac

ceptable results for the parameter estimation problem discussed in this dissertation, 

it is not clear if this method is optimal in any sense. What is meant by this is the 

following: in the double smoothing technique each pixel value in the image is replaced 

by a weighted sum of the eight neighbor pixel values and the value of the pixel un

der consideration. Also, the weight assigned to each contributing pixel value in the 

summation is exactly the same, 1/9. The question that remains unanswered is if it 

is possible to do better by using only a subset of the eight neighbor pixel values, or 

use a larger set of neighbor pixel values, and by assigning different weights to the 

chosen neighbor pixel values when restoring an image. This problem was investigated 

in detail by Kashyap and Chellappa (1981, 1983). They use two-dimensional random 

field (RF) models to describe the image to be restored and the minimum mean square 

error (MMSE) criterion in the actual restoration. A summary of this method will be 

given in the following sections. 
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5.2 Spatial Interaction Models 

Any M X M image can be described by the familiar two-dimensional array of 

finite gray levels as follows 

{2/(^)» a = (*, 3)  € fi}, fl = {a = (z, ;), 1 < i ,  j ,  <  M}  (5.1) 

An important characteristic of an image described this way is the statistical depen

dency of the gray-level value at each pixel location on the gray-level values of all the 

neighbor pixels in all directions. One possible way to describe this dependency is by 

using spatial - interaction models, also known as random field models. These models 

describe the image gray level, y(s), at pixel location s, as a linear combination of the 

neighbor pixel gray levels + r), r G iV}, where N is the neighbor set and does 

not include (0, 0), and an additive noise. The spatial interaction models place no 

constraint on the neighbor sets used, they can be causal or noncausal and include any 

number of neighbors. 

The spatial interaction models can be divided into two classes of models known 

as the simultaneous models and the conditional Markov (CM) models. The class 

of simultaneous models can be further divided into the simultaneous autoregressive 

(SAR) models, the simultaneous moving average (SMA) models and the simultaneous 

autoregressive and moving average (SARMA) models. The relationship between the 

simultaneous and CM models is as follows: for each SAR model there exists a CM 

model with the same spectral density function, but the converse is not true. 

The reason why simultaneous models are still important although SAR models 

are a subset of CM models, is because SAR models are more parsimonious than CM 
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models and because a study of SAR models leads to SMA and SARMA models which 

are not a subset of CM models. The emphasis will be on SAR models from here on. 

The image restoration problem always involves a noisy image to be restored. 

First of all, an appropriate SAR model must be fitted to this image. This will include 

a method to estimate the coefficients of the neighbor pixel values in a specific neighbor 

set used as well as a method to find the best neighbor set, from all possible neighbor 

sets, to be used for the image under consideration. After this is done, the image will 

be restored using a MMSE criterion and the estimated SAR model. 

It must be pointed out that the restoration can be done treating the image 

either as a finite block defined over an infinite lattice or as an image defined over 

a finite lattice. The latter approach will be followed due to the simplification in 

the mathematical procedures involved (Kashyap and Chellappa, 1983). To be more 

specific, the image will be defined on a toroidal lattice. This has the advantage 

that the transformation matrix will be block circulant and therefore this matrix's 

eigenvalues can be written down exactly, as will be seen. 

5.3 Image Description using SAR Models Defined on a Toroidal Lattice 

As can be seen from equation (5.1), the image is defined over the finite lattice 

fl, where 

n = {a = (i, j), 1 < i, j  <  M}  (5.2) 

Partition the lattice Q into two subsets, the interior set Qj and the boundary set 

which are mutually exclusive and totally inclusive. This will give 
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^5 ~  "t"® ~  (*)  j ) ;  ^  €  n  and  (a + r) ^ fi f o r  a t  l eas t  one  r  €  N}  (5.3) 

Qj = Q — ÇIq (5.4) 

Given this partition, the toroidal lattice SAR model for a finite image is defined 

by (Chellappa and Kashyap, 1982) as 

yi^) = ^ ̂ ry(a + r) + \/iôw(5) sÇQj (5.5) 
veN 

y ( s )  =  ^  Ory i ( s  +  r )  +  y /pw{3)  a eQg  (5.6) 
reN  

where 

V l i i h  j )  +  { k ,  I ) )  =  y { { i ,  j )  +  { k ,  / ) )  i f  ( ( , ,  j )  +  { k ,  /)) € fi (5.7) 

;)  + (k,  I))  = y[{(^ + i  -  ̂)mod m} + ^ ~  ^^mod 

i f  i ( h j )  +  { k ,  l ) ) ^ Q  

In these equations it was assumed that y(a) is stationary over the whole image 

and that w(a) is an i.i.d. noise sequence with zero mean and unity variance. The 

u n k n o w n  p a r a m e t e r s  a r e  (Or,  r  ^  N) a n d  p.  
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The two equations (5.5) and (5.6) used to describe the spatial relationship in 

the image, result in equations giving the image gray-level values at each pixel 

location in terms of the neighbor pixel gray-level values and the i.i.d. noise sequence 

{w(a)}. By using a lexicographic row ordered array format for {%/(a)} and {w(j)}, 

two vectors y and w, dimension x 1, result which are related by 

B(0)y = v/pw 

where B(0) is a block circulant matrix: 

(5.8) 

B(0) = 

Bl,l ®1,2 ••• Bi,M 

®1,M ®1,1 ••• ®1,M-1 
(5.9) 

, ®1,2 ^1,3 ••• B 1,1 

and 0 = co l  (#r, f  € iV), a vector of dimension m x 1, where m is the number of 

neighbors used in the specific SAR model. An example will clarify this notation. 

Example: 

Suppose the following neighbor set about pixel (0, 0) is used to describe the 

spatial relationship in an image 

iV = {(-l,0), (0,1), (1,0), (0,-1)} (5.10) 

Graphically this neighbor set looks as follows; 
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(-1,0) 
# 

(0,0) 
(0,-1) • X • (0,1) 

(1,0) 

Using the toroidal SAR model for the image, a general equation for the gray-level 

value at each pixel location will be as follows 

y{ s )  =  ^_ i ,o2 / ( ^  +  ( - l , 0 ) )  +  ̂ o , l f ( ^  +  (0 , l ) )  +  ̂ l ,O i / ( - s  +  ( l , 0 ) )  +  

+(0,-1))+\/p«^(«) (5.11) 

Substituting the value for s  = (i, j )  at each pixel location and taking the toroidal 

lattice assumption into account, the set of equations (5.13) results. 

This matrix consists of a set of blocks j. To understand the composition of 

these blocks, consider block which is 

Bl,l = 

— A 0,1 

0,-1 -A 0,1 " 

0 

0 

),-l 

(5.12) 

-^0,1 0 ... 0 -^0,-1 1 

This block (and every other block) is circulant. To fill in the elements we can 

start by centering a 3 x 3 window on the (1, 1) element of the image. 
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Then the (1, 1) element of % is 1 because no weighting applied to y ( l ,  1). 

To get the (1, 2) element of % we go to the east neighbor of y(l,l), which is 

2/(1,2), and use the coefficient The element is —I^q,! because the y(a + r) terms 

in equation (5.11) have been moved to the left hand side in equation (5.3). The (1,3) 

element of B^ % is zero because it lies outside the neighbor set used. The following 

elements in the first row are zero for the same reason. The last element in the first row 

is —^0,-1 because B^ ^ is constructed as block circulant. The remaining elements of 

B^ 2 can be realized from its block circulant characteristics. 

It is clear from this example that the block circulant matrix satisfies the general 

form given in equation (5.9) with 

Bl , l  =  c i rcu lan t  ( 1 ,  - ^o , l '  0 , - " , - ^0 , - l ) ,  

®1,2 = c i rcu lan t  ( -01  Q,  0 ,  0 , . . . , 0 ) ,  

= ci rcu lan t  (—6  0, 0, ...,0), and 

® J # 1, 2, M. 

It follows from equation (5.8) that 

y = V^B(0)~^w (5.14) 

The image covariance matrix of y can be computed as 

Qy =  cov{y )  

= ^(yy^) 

= E(v^B(0)-lw w^(B(0)-f ̂ ) 

= XB(@)-^E(w w^)[B(0)-^]^) 
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= (5.15) 

This derivation depends on the fact that the matrix B(©) has an inverse. Chellappa 

and Kashyap (1982) have shown that a necessary and sufficient condition for B(0)~^ 

to exists is that all the eigenvalues of the block circulant transformation matrix B(©), 

namely «5, a 6 Î2, not be zero. Therefore 

tfa = (1 — @^$6) ^ 0 (5.16) 

where 

$6 = co l [exp \ / ^ { ^ ) [ s ^  - (1, l)r), r  G N\  

= col[exj>yf^C^)[{i - 1)6 + (;• - 1)/), (&, I) 6 iV] 

• The deviation leading to equation (5.16) can be found in the appendix of Chel

lappa and Kashyap (1982). 

5.4 Image Restoration using SAR Models 

The image restoration method discussed from here on is based on the MMSE 

principle. First of all the degradation model must be defined. This model is shown 

in Figure 5.1. 

The qualities are defined by: 

H is a non-separable, spatially invariant, periodic point spread function (PSF), 

j;(i ,  j) is a zero mean, signal independent, additive noise of variance 7. 
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Vih j )  

y(î j)  
H 

x(ij) 

Figure 5.1: Degradation model 

Let X, y and r j  represent lexicographic ordered arrays of the degraded image, 

original image and additive noise, respectively. It then follows that the degradation 

model is given by the following mathematical equation 

where H is the block circulant matrix. The fact that H is a block circulant matrix 

follows from the requirement that the PSF is periodic and is shown as such in Gonzalez 

and Wintz (1987, p. 212). 

Andrews and Hunt (1977) have shown that, using this degradation model, the 

MMSE estimate of y, is given by the following equation 

where Qy is the covariance matrix of the original image y as already defined. 

Chellappa and Kashyap (1982) suggested the following distinction between three 

X = Hy +17 (5.17) 

y = QyH^(HQ.yH^ + 7l) (5.18) 
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different cases in the image restoration problem: 

1. A prototype of the original image is available and an SAR model with param

eters (0,/t)) is assumed for the undegraded image y. These parameters can be 

estimated from the prototype image. 

2. A prototype of the original image is not available and an SAR model with 

parameters is assumed for the degraded image x. These parameters 

can be estimated from the given degraded image x. 

3. A prototype of the original image is not available and an SAR model with 

parameters (0,/?) is assumed for the original image. These parameters can be 

estimated from the given degraded image x. 

Only cases 2 and 3 are of interest in this study, because a prototype of the original 

image is never available in radio astronomy data. 

5.4.1 Image Restoration using an SAR model for the Degraded Image x 

The SAR model for the degraded image is given by the following equations 

5 6 (5.19) 
reN  

(5.20) 
reN  

where xi{s + r) has the same definition as yi{s + r) in equation (5.6). 
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The covariance matrix for the degraded image is given by 

Qx =  i;{[Hy + 7,][Hy + 7;]^} 

= E{[Hy  +  v] [y^KT  +  r)T]}  

= jE;{Hyy^H^ + 7y^H^+Hy/ + 777/^} 

= HQyH^+7l (5.21) 

where 7 = E{r^rp - } .  It then follows that the covariance matrix of the original image 

is given by 

Qy = H-l(Qx-7l)(H^)~^ (5.22) 

Substituting this expression back in the equation for the MMSE estimate of y gives 

y = H-l(Qx - 7l)(H^)~^H^[HH-l(Qa: - 7l)(H^)~^H^ + 7lf 

or 

y = H-l(Qx-7l)Qx^x (5.23) 

Two important matrix equations concerning block circulant matrixes are in order 

here to simplify the expression above. Gonzalez and Wintz (1987, p. 214) have shown 

that if H is a block circulant matrix for an N x N image, then 

and 

H = WDW-1 

= WD*W~1 

(5.24) 

(5.25) 
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where D is a diagonal matrix whose elements D(k, k) are related to the eigenvalues 

of H, and 

W(i, m) = m)W^ i ,  m  =  0 ,  1,... A/ — 1 (5.26) 

where 

W^{k ,  n )  =  n )  fc ,  n  =  0,  1 , . . .  A/-  1,  (5 .27)  

2'7r 
Wjy(* ,  m) = exp[ j—im]  i ,  m  =  0 ,  1,... M - 1, (5.28) 

27r 
wj \ f { k ,  n )  =  exp[ j—kn]  k ,  n  =  Q,  1 , . . .  M  — I  (5.29) 

and j  = \/^. This formulation implies that W is a x  matrix which was 

broken down into partitions of size M x M. W"~^ is defined analogous by 

W ^(i, m) = nx)Wi, m = 0, 1,... M — 1 (5.30) 

where 

W^^(k ,  n )  =n )  k,  n  =  Q,  I , . . .  M -  1 (5.31) 

m)  =  exp[ - j ^ im]  t, m = 0, 1,... M - 1 (5.32) 

and 

Wj^^{k ,  n )  =  exp[ - j ^kn]  k ,  n  =  0 ,  1 , . . .  M  -  1  (5.33) 

Substituting all these values back, the matrix in equation (5.34) is obtained. 
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1 1 

1 

. . .  1  1 1  . . .  1  

1 

1 1 

1 

W -

. . .  1  

1 

e M 

1 1 

1 

. .  1  

"sfCW-D e M 

1 

^^(Af-i)^ ... 
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Because H, and therefore Qx, are both block circulant matrixes, equation (5.24) 

can be substituted into equation (5.23) to give 

y = WD^1w-1(WDq^W-1--,I)W(Dq^)-1w-1x 

= WD^1(Dq^-7I)(DÇ^)-1W-1X (J.35) 

By writing out this expression, using the values for W in equation (5.34), it 

follows that 

(5.36) 
') J J  

where 

{^ j  =co l [ t j ,  X 1 vector, 

t j  =  co/[l, \ j ,  M X 1  vector, 

= exp[\/^ 2iT{i — 1)/A/], and 

h^j and are the eigenvalues of the block circulant matrixes H and Qx, 

respectively. 

Equation (5,36) is an optimal estimate for y if ©' and p' are known exactly 

(Chellappa and Kashyap, 1982). Because these parameters must be estimated from 

the degraded image in practice, deviations from the optimal can be expected. 

An estimate for 7 can also be obtained from the degraded image. The usual 

procedure is to use the high frequency components of the spectral density function of 

the degraded image as an estimate of 7. In the case of a 128 x 128 image a possible 

estimate for 7 would be given by 
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where 

O3 = [d = (i, i), 61 < i, j  <  64]. This equation is valid because the eigenvalues of 

the covariance matrix Q® are the same as the values of the discrete spectral density 

defined as the discrete 2-D Fourier Transform of the covariance function (Kashyap, 

1980b). 

5.5 Estimation of SAR Model 

To be able to apply equation (5.36) to restore an image, it is first of all necessary 

to determine the SAR model needed to describe the image. This problem can be 

broken down into two parts: Given a specific neighbor set, it is necessary to determine 

the coefficients of these neighbors to be used in an SAR model. In the second part 

it is necessary to find the best neighbor set to be used for a specific image giving all 

possible neighbor sets. 

5.5.1 Estimation of Neighbor Coefficient Parameters 

One possible way to estimate the coefficients of the neighbors in an SAR model 

is by using ordinary least squares (LS). However, this approach has the disadvan

tage that the LS estimates are not consistent for toroidal lattice SAR models using 

nonunilateral neighbor sets (Ord, 1975 and Whittle, 1954). An alternative method is 

to use maximum likelihood (ML) estimates. This method requires computationally 

expensive algorithms because for Gaussian SAR models with nonunilateral neighbor 
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sets, the loglikelihood function is nonquadratic. Kashyap and Chellappa (1983) have 

derived the following approximate iterative estimation scheme which gives estimates 

close to the ML estimates and is computationally attractive 

®(+l = [R- ^V-^U] ^ = 0, 1,..., and 

Pt ~ W-®) ~ ®< = 0, 1,2, 3.... 

where 

z(a) = co/[x(3 + r), r € N] ,  

S = Efi z(a)z^(a), 

U = En z(^)x(a), 

V = EnC„ 

R =  EqSsSJ -CsCj ,  

Cs  = co l [Cos^{ s^  - (1, l)}r, r  €  N] ,  

Ss = co l lS in^ i s ' ^  - (1, l)}r, r  G TV], and 

©0 = s-^u. 

This iterative procedure is started by using the initial value of ©g = S^^U. It was 

found that this scheme normally converges in 3-4 iterations. 

5.5.2 Choice of Neighbor Set 

After the ML estimates of the neighbor coefficients have been determined for 

a number of different neighbor sets, it is necessary to find the neighbor set which 

best describes the image under consideration. There are three possible approaches to 

choose between different neighbor sets: 

1. Pairwise Hypothesis Testing. 
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2. Akaike's Information Criterion (AIC). 

3. Bayes Approach. 

The pairwise hypothesis testing method suffers from the fact that it is not tran

sitive nor consistent (Kashyap, 1977). The AIC method is in general transitive, but 

not consistent (Kashyap, 1980a). Kashyap and Chellappa (1983) have shown that 

using the Bayes decision rules, the following test statistic results 

C i f e  =  { - E  +  +  
aefi 

Inpjj + /n(M^)} (5.38) 

where 

^ks  = En ̂ ks^ks  + ^ks^ l s ^  

Cks = col[Co3'^{3^ - (1, l)}r, r 6 

^ka  = co l [S in^{3 ' ^  - (1, l)}r, r  E iV^], 

= 0 estimated for the k-the neighbor set, 

= number of neighbors of k-the neighbor set, and 

=  p  estimated for the k-the neighbor set. 

The neighbor set Nf^ with the lowest value of Cf^ is then chosen as the best neighbor 

set for the specific image under consideration. . 

5.0 Synthetic Image Generation 

To be able to test how close the estimated parameters, for an image obeying a 

specific SAR model, are to their correct values, such an image must first be generated. 
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This can be done using equation (5.14) as follows 

y = B(0) ^y/pyf 

(5.39) 

The second step is true because B(0) ^ is block circulant and we can use equa

tion (5.24). W, Dg and were defined before. By evaluating the matrix mul

tiplications above, keeping in mind that Dg is a diagonal matrix consisting of the 

eigenvalues of the block circulant matrix B(0), it can be shown that 

îlj = Fourier vectors defined before. 

The image defined by equation (5.40) can be generated using two dimensional FFT 

algorithms. This is best explained by an example. 

Example: 

Consider the generation of a 2 x 2 synthetic image. Using the definitions following 

equations (5.36) and (5.40) the following expressions are obtained 

(5.40) 

where 

= eigenvalues of block circulant matrix B(0)"'^, and 



www.manaraa.com

96 

t i  = h  = 

h i  =  

/21 = 
^•2iri^ 

/ l2  =  

/22 = 

ei27r^ 

gi27r^ 

J27:^  j 2T^  

J2ir'^ j2iriji 

Therefore 

5J1 =  ( l .w( l )  4" e  w(2)  +  e  ^ ^  u;(3)  + 

^-j27r^^-i27r^^4)) 

«12 =  ( l .K;( l )  +  e  -^'^'^1,(2) + « 

- i ^ ' ' ^w(4 ) )  
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«21 = (l.w(l) + e •^^^^u;(2) + e w(3) + 

^_y27ri^^-i27ri§1^4)) 

"*22 — (l'W(l) + e + e w(3) + 

e . j2 j - ^e - j ^ ' ' ^w(4 ) )  

It is clear that these Fourier components of a white noise lexicographically ordered 

image, w(s), can be computed using a 2-D FFT directly. Next, we evaluate equa

tion (5.40). Set pij = 

It then follows that y = /uPn + /i2Pl2 + f2lP21 + /22P22' 

or 

y 11 Pll 

yi2 P12 

2/21 P21 

f22 P22 

+ 

P12 

P12 

V\2 

P12 

+ 

P21 P22 

P21 P22 

P21 

+ 

P22 

P21 P22 

It can be seen by inspection that this can be computed using an inverse 2-D FFT 

directly. Therefore the synthetic image can be generated using 2-D FFTs. 

The unknowns in equation (5.40) are the eigenvalues, yLij, of the block circulant 

matrix B(©)~"^. Chellappa and Kashyap (1982) have shown that these eigenvalues 

are given by 
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«> = 1+ E h,l44 (541) 
k ,  l € N  

By arbitrarily choosing values for ^ and p, synthetic images can be generated 

by using equation (5.40); wis) is a white noise sequence with zero mean and unit 

variance as before. Results of computer experiments using the above theory of image 

generation are shown in the next chapter. 



www.manaraa.com

99 

6. RANDOM FIELD RESTORATION RESULTS 

6.1 Synthetic Image Generation 

The theory in Section 5.6 was used to numerically generate synthetic images 

obeying different SAR models. The parameters used for the different SAR models 

were the same as those used by Chellappa and Kashyap (1981) and are given in 

Table 6.1. The same white noise sequence with zero mean and unity variance was 

used in the generation of all the images. The image gray-level values for each image 

were transformed to lie between 0 and 255. The sixteen synthetic generated images 

are displayed in Figure 6.1. 

Figure 6.1: Synthetic generated images 
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Table 6.1: Synthetic generated image parameters 

Neighbor Set and Neighbor Coefficients Image 
1,1 

1,2 

1.3 

1.4 

2,1 

2,2 

2.3 

2.4 

3.1 

3.2 

3.3 

iV = {(-l,0); (0,-1); (-1,-1)} 
Q =0.9704; 1 ~ 0.9735; = —0.9686 

iV = {(-l,0); (1,0); (0,-1)} 
Q = 0.18; Q = 0.18; 1 ~ —0.12 

iV = {(-l,0); (0,-1); (-1,-1); (1,-1)} 
Q = 0.18; ^0,-1 ~ 11011; = —1.039; i = —0.1806 

iV = {(-l,0); (0,1); (1,1); (-1,1)} 
Q = 0.18; 2 = 1.1011; 0i i — —1.039; l,i = —0.1806 

iV = {(0,1); (1,0)} symmetric 
^0,1 = ^0,-1 = 0.26; ^1^0 = ^-1,0 = "0 12 

N = {(1,-1); (1,1)} symmetric 
h-1 = ^-1,1 = -014; ^1,1 = ^-1,-1 = 0-28 

iV = {(0,l); (0,-1); (-1,0); (1,0); (1,1)} 
^0,1 — 0.12; ^0,-1 — 0"15; ^—1,0 = 0.18; ^^,0 ~ 0.1; % = 0.11 

N = {(1,-1); (0,1); (1,1)} symmetric 
O i _ l  =  9 _ i ^ i  =  0 . 2 3 ;  ^ 0 , 1  =  ̂ 0 , - 1  =  - 0 . 1 4 ;  O i ^ i  =  =  0 . 2 2  

jV = {(1,-1); (0,1); (1,1); (1,0)} symmetric 
= ^—1,1 — —0.2480; ^0,1 — ^0,-1 ~ 0.5081 

= -0.2874; Q = ^—1,0 — 0.5256 

N = {(0,1); (1,0); (0,2); (2,0)} symmetric 
^0,1 = ^0,-1 = 0.20; ^1^0 = ^-1,0 = -0.10 
^0,2 = ^0,-2 = -0.15; ^2,0 = ^-2,0 = 0 20 

AT = {(0,1); (1,0)} symmetric 
^0,1 — ^0,-1 — 0.1825; g = g = 0.3794 
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Table 6.1 (continued) 

Image Neighbor Set and Neighbor Coefficients 

3,4 N = {(1,0); (1,1); (0,1)} symmetric 

^1,0 = ^-1,0 = 0-18; ^1,1 = ^-1,-1 = 0-22; ^o,l = ^0,-1 = -0.10 

4,1 N = {(1,0); (1,-1); (1,1)} symmetric 

^1,0 = ^-1,0 = 0-12; ^1,-1 = ^-1,1 = 0.28; = ^-1,-1 = —0.14 

4,2 iV = {(-l,0); (-2,0); (0,-1); (0,-2); (-1,-1)} 

Q = 1.0388; ^—2,0 — —0.1814; ^Q,—1 ~ 0.9046; 

= —0.7288 

II C
M

 1 -0.1088; 

4,3 ^ = {(1,0); (1,-1); (0,1)} symmetric 

^1,0 = ^-1,0 = 0 28; = &-i^i = 0.22; ^o,l = ^0,-1 = -0.14 

4,4 TV = {(0,1); (1,0); (1,1); (1,-1)} symmetric 

^0,1 — 1 = 0.5246; g = ^_i^o ~ 0.5357 

= —0.3126; i = ̂ —1,1 = -0.25 

It is obvious from Figure 6.1 that different SAR models give rise to different 

characteristics in the generated images. Different white noise sequences were used 

with the same SAR models to generate more synthetic image sets. It was found that 

the different white noise sequences do not change the characteristics of the images 

because the characteristics are determined by the SAR model used. 
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6.2 SAR Model Parameter Estimation 

The approximate maximum likelihood parameter estimation technique, as dis

cussed in Section 5.5.1, was used to estimate the SAR model parameters from the last 

four synthetic generated images. These estimated parameters were then compared 

with the original SAR model parameters used to generate the images. The results 

are given in Table 6.2. 

It can be seen that the estimated parameters, using the approximate maximum 

likelihood estimation technique, are very close to the original parameters used in the 

image generation. The difference between the estimated parameters and the original 

parameters is a function of the SAR model used to generate the synthetic image and 

varies from 14% for image (4,1) to 1.18% for image (4,2) (matrix notation is used 

to refer to the different images in Figure 6.1). The minimum mean square error 

restoration of images is a function of the SAR model used to describe the images 

(see Section 5.4). The best restoration is obtained when the underlying SAR model 

describing an image is known exactly. However, in practice the model is estimated 

from the noisy image to be restored because the original image is seldom available. 

(What is the sense of restoring an image when the original is available?) This fact 

must always be kept in mind and in this sense an error of 14% in the underlying 

model is not too extreme. 

6.3 Calculation of Test Statistics 

To test the effectiveness of the test statistic given in Section 5.5.2, image (4,1) was 

used as an example. To find the SAR model that best describes this image, different 
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Table 6.2: Maximum likelihood estimated parameters 

Image Neighbor Coordinate Original Parameter Estimated Parameter 

1,0 ^10 = 0.1200 ^1,0 ~ 0.1388 

-1,0 0 = 0.1200 0 = 0.1388 

4,1 1,-1 ^1,-1 = 0.2800 ^1,-1 = 0.3168 

-1,1 ^-1,1 = 0-2800 = 0.3168 

1,1 = —0.1400 ^l,l'= -0.1587 

-1,-1 = —0.1400 

p — 1.111 

= —0.1587 

p = 1.003 

-1,0 Q = 1.0388 Q = 1.0301 

-2,0 ^_2^0 ~ —0.1814 0_2^O — —0.1804 

4,2 0,-1 ^0 = 0.9046 (9o,_'i = 0.8996 

0,-2 _2 = —0.1088 _2 = —0.1055 

-1,-1 = —0.7288 

p = 1.111 
_1 = -0.7219 

p = 1.103 

1,0 01^0 = 0.2800 ^1,0 ~ 0.3141 

-1,0 ^-1,0 = 0.2800 = 0.3141 

4,3 1,-1 = 0.2200 ^1,-1 = 0.2308 

-1,1 ^-1,1 = 0.2200 (9_j^ J = 0.2308 

0,1 0Q 2 = —0.1400 ^0,1 = -0.1242 

0,-1 = —0.1400 

p = 1.111 

= —0.1242 
p = 1.045 

0,1 ^0,1 ~ 0.5246 ^0,1 — 0.5241 

0,-1 ^0,-1 = 0.5246 ^0,-1 = 0.5242 

1,0 ^1,0 ~ 0.5357 i9l,0 = 0.5353 

4,4 -1,0 0 = 0.5357 ^-1,0 = 0.5353 

1,1 2 = —0.3126 = —0.3120 

-1,-1 = —0.3126 = -0.3120 

1,-1 = —0.2500 ^1,-1 = -0.2494 

-1,1 1 = —0.2500 
p = 1.111 

2 = —0.2494 
p = 1.102 
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neighbor sets were chosen as candidate SAR models. Although infinite different 

neighbor sets are possible, it must be kept in mind that the statistical relationship 

between pixels far apart in an image is very low. It is therefore only necessary to 

compare the test statistics of neighbor sets using the closest neighbors to a pixel. 

Keeping this fact in mind, seven different neighbors sets were chosen as candidate 

SAR models using only the 4-neighbors (neighbor set 4), the 8-neighbors (neighbor 

sets 1, 2, 5 and 6), a causal neighbor set (neighbor set 3) as well as one larger neighbor 

set (set number 7). 

The parameters of each neighbor set were estimated (using the approximate 

maximum likelihood technique in Section 5.5.1) for the image under consideration. 

These estimated parameters were used to calculate a test statistic for each neighbor 

set using equation (5.38). The SAR model with the lowest test statistic, is chosen 

as the SAR model that best describes the image under consideration. The results are 

given in Table 6.3. 

As can be seen from Table 6.3, neighbor set number 1 has the lowest value for 

the test statistic. This indicates that the decision rule given in Section 5.5.2, which 

chooses the neighbor set with the lowest test statistic, is powerful enough to pick the 

correct neighbor set used to generate the synthetic image. 

This is true even in the situation when the correct neighbor set is part of a larger 

possible neighbor set (neighbor set number 1 is included in both neighbor set number 

6 and neighbor set number 7). It can also be seen from Table 6.3 that the closer 

a neighbor set is chosen to the correct neighbor set, the lower the value of the test 

statistic calculated for that neighbor set. 
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Table 6.3: Estimated parameters for image (4,1) 

Number Neighbor set used Estimated Parameters P Test Statistic 

-1,0 ^-1,0 = 0-1388 

1,0 *^1,0 ~ 0.1388 

1 -1,1 1 = 0.3168 1.003 2088 

1,-1 ^1,-1 = 0.3168 

-1,-1 = —0.1587 

1,1 ^1.1= -0.1587 

0,-1 #0 — 1 = 0,0398 

0,1 
OO eo o
 

o
 

It 

2 -1,1 (9_1^1 = 0.3328 1.131 2490 

1,-1 = 0.3328 

-1,-1 è_i_i = —0.1637 

1,1 <9^ = —0.1637 

-1,0 0 ~ 0.2910 

3 0,-1 ^0,-1 = 0.0472 2.601 3940 

-1,-1 = —0.5376 

0,-1 #0 = 0.0513 

4 0,1 ^0,1 — 0.0513 3.362 5280 

-1,0 = 0.1719 

1,0 ^1,0 — 0.1719 

-1,1 ^-1,1 = 0.3418 

5 1,-1 ^1,-1 = 0.3418 1.135 2524 

-1,-1 = —0.1567 

1,1 ^1,1 = -0.1567 

0,-1 #0 — 1 = 0.0124 

0,1 II
 o
 

o
 

to
 

-1,0 ^-1,0 = 0.1365 

6 1,0 #1,0 = 0.1365 1.005 2114 

-1,1 = 0.3143 

1,-1 = 0.3143 

-1,-1 _1 = -0.1609 

1,1 #1,1 = -0.1609 
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Table 6.3 (continued) 

Number Neighbor set used Estimated Parameters p Test Statistic 

-1,0 Q = 0.1420 

1,0 ^1^0 = 0.1420 

-1,1 2 = 0.3125 

7 1,-1 = 0.3125 1.010 2163 

-1,-1 _1 = -0.1515 

1,1 ^1,1 = -0.1515 

-2,0 Q = —0.0160 

2,0 O
 II
 1 o
 

o
 

G)
 

o
 

For example, neighbor set number 6 and neighbor set number 7 have much lower 

test statistics than neighbor set number 4, which has little in common with the original 

neighbor set used to generate the synthetic image. 

8.4 Restoration of Noisy Image 

The random field restoration technique was applied to restore an image contam

inated with zero mean white Gaussian noise. The original image, noisy image and all 

seven restored images (using the seven possible neighbor sets given in the Table 6.3) 

are shown in the Figure 6.2. The signal-to-noise ratio for the noisy image was 0 dB. 

The estimated parameters as well as the test statistic for each neighbor set were 

evaluated as discussed in Section 6.3. The noisy image was restored using each es

timated SAR model. The next step was to calculate the MSE between the original 

image and the different restored images. The results are given in Table 6.4. The test 
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statistic for SAR model number 6 has the lowest value, with SAR model number 3 

second. The MSE for SAR model number 3 was found to be the lowest but SAR 

model number 6 followed very closely. The apparent discrepancy can be contributed 

to round off errors in the numerical calculations as well as approximations made in 

the theory when the random field restoration technique was developed. Figure 6.4 

also visually suggests that the restored images number 3 and number 6 are the best. 

The test statistics for models 4 and 5 were very similar. A visual examination of 

restored images 4 and 5 shows quit different results. This difference is also reflected 

in the MSE of models 4 and 5. Model 5 has an MSE of ten times more than model 4. 

This result indicates that one must be very cautious when using only the test statistic 

as a guideline for the restoration of an image. 

Figure 6.2: Restoration of Noisy Image 
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Table 6.4: Evaluated parameters and statistics for image in Figure 6.2 

No. Neighbor 
Set used 

Estimated Parameters P Test Statistic MSE 

1 

-1,0 

1,0 

-1,1 

1,-1 

-1,-1 

1,1 

^-1,0 = 0-1207 

#1^0 = 0.1207 

^-1,1 = 0.1308 

#1 _1 = 0.1308 
= 0.1039 

#11 = 0.1039 

820.89 27945 1174.9 

2 

0,-1 

0,1 

-1,1 

1,-1 

-1,-1 

1,1 

#0 _1 = 0.1421 

#o|l = 0.1421 

^-1,1 =0-1250 

#1 _1 = 0.1250 

#Jl^_l = 0.0998 

#1,1 = -0.0998 

792.17 27840 705.08 

3 

-1,0 

0,-1 

-1,-1 

#_1 0 = 0.2233 

#0 _1 = 0.2974 

#_1 _1 = 0.1666 

889.41 27839 163.08 

4 

0,-1 

0,1 

-1,0 

1,0 

#0^—1 = 0.1688 

#0,1 = 0.1688 

#_1^0 = 0.1444 

#1,0 =0.1444 

832.09 28034 257.81 

5 

-1,1 

1,-1 

-1,-1 

1,1 

#_1^1 = 0.1642 

#1 _.l = 0.1642 

#_1 _1 = 0.1376 

#lj'= 0.1376 

871.64 28187 2403 

6 

0,-1 

0,1 

-1,0 

1,0 

-1,1 

1,-1 

#0,_i = 0.1215 

#0,1 = 0.1215 

#_1 0 = 0.0929 

#1 0 = 0.0929 

#_1 1 = 0.1041 

#1 _1 = 0.1041 

769.95 27783 164.92 
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Table 6.4 (continued) 

No. Neighbor Estimated Parameters P Test Statistic MSE 

Set used 

-1,-1 = 0.0786 

1,1 ^1,1 ~ 0.0786 

-1,0 

o
 

o
 II o
 1 

1,0 ^1,0 ~ 0.1074 

-1,1 ^-1,1 =0.1195 

7 1,-1 ^1,-1 =0.1195 812.62 27923 2036.6 

-1,-1 = 0.0901 

1,1 ^2 2 = 0.0901 

-2,0 Q = 0.0642 

2,0 ^2,0 ~ 0.0642 

6.5 Restoration of Noisy Simulated Flux Density Maps 

To determine the effectiveness of the random field restoration procedure with 

respect to the estimation of parameters using noisy image data, this procedure was 

used to restore the same three noisy simulated flux density maps discussed in detail 

in Section 3.1. The same seven possible neighbor sets as in the previous section were 

used as candidate SAR models for each flux density map. The parameters for each 

neighbor set were estimated using the approximate maximum likelihood estimation 

procedure as before, and the best set was chosen by calculating the test statistic for 

each neighbor set as already discussed. 
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Original image 
Maximum vidua = 0.3210 Jy/beam 
Ground level value = 0.0 Jy/beam 

Noisy image 
Maximum value = 0.3950 Jy/beam 
Ground level value - 0.0 Jy/beam 

Restored image 
Maximum value = 0.3660 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 6.3: 2 cm flux density maps 
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Original image 
Maximum value = 0.1920 Jy/beam 
Ground level value = 0.0 Jy/beam 

Noisy image 
Maximum value = 0.2290 Jy/beam 
Ground level value = 0.0 Jy/beam 

Restored image 
Maximum value = 0.2090 Jy/beam 
Ground level value = 0.0 Jy/beam 

Figure 6.4: 6 cm dux density maps 
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Orignal image 
Maximum vcdue = 0.0149 Jy/beam 
Ground level value = 0.0 Jy/beam 

Noisy image 
Maximum value = 0.0183 Jy/beam 
Ground level value = 0.0 Jy/beam 

Restored image 
Maximum value = 0.0160 Jy/beam 
Ground level value = 0.0 Jy/beam 
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Each flux density map was restored using the SAR model with the lowest test 

statistic for that map. Figures 6.3, 6.4 and 6.5 show the results for each flux density 

map obtained by using the random fleld restoration. 

An important observation from these three figures is that in all three cases the 

restored images are much smoother than the noisy images. The only areas that do 

not appear to be very smooth are the peak areas. This is true for all three restored 

images. There exists a simple explanation for this phenomena. From Section 3.1 we 

known that zero mean white Gaussian noise with a standard deviation of 10% of a 

specific pixel value was added to all pixels. Because the peak areas have larger values 

than the rest of the image, more noise was added to the pixels in these areas. This is 

a reason why the random field restoration procedure did a better smoothing job for 

the pixels not in the peak areas, compared to the pixels in the peak areas. 

The restored images in Figures 6.3, 6.4 and 6.5 were then used to estimate the 

parameters in the flux density equations (2.15), (2.16) and (2.17). This was done in 

exactly the same way as discussed in Section 2.3. Only in this case the random field 

restored images were used. 

The results for row 16 for all three estimated parameters are shown in Figures 

6.6, 6.7 and 6.8. These curves show a comparison of the estimated parameters, for 

a specific cut through the estimated parameters maps, for different situations. The 

different curves are labelled on the figures. The curve labelled "0% noise" shows 

the estimated parameters when 0% noise was added to the simulated flux density 

maps (resulting in the original temperature and optical depth parameters used in the 

simulation as discussed in Chapter 3) and is used as a reference condition. 
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TO ESTIMATE - R0W16 
(SimiLATZD DATA - 10* XOISE) 

I I I I I I I I I I I I I I I I I I I I I ' I I I I I 
12345678 9 1011121314 IS 16171819 20 2122 23 24 25 26 27 28 

COLOmt IDDBZR 

0» loisE * 10* XOISE • SHOOTHEO mm A RF SMOOTH 

Figure 6.6: Cut through row 16 of T, maps showing the effect of random field 
restoration 

T1 ESTIMATE - R0W16 
(SIMULATED DATA - 10* XOISE) 

-1 -

"2 I I I I I I I I F"! I I I I I I I I I 1 I I I I I I r 
123456 78 9 10 1112 1314 IS 1617 18 19 20 21 22 23 24 25 26 27 28 

COLDHX NUMBER 

0* XOISE » 10* XOISE A SMOOTHED FLUX X SF SMOOTH 

Figure 6.7: Cut through row 16 of T, maps showing the effect of random field 
restoration 
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T6 ESTIMATE - R0W16 
(SIOTLATeO BATA - 10» MIS:) 

0 

1 2 3 4 5 6 7 8  9  1 0 1 1 1 2 1 3 1 4  1 5 1 6 1 7 1 8 1 9  2 0  2 1  2 2  2 3  2 4  2 5  2 6  2 7  2 8  

COLDHIf IDHBER 

• OU lOISE * 10% NOISE A SMOOTHED TLTO X HT SMOOTH 

Figure 6.8: Cut through row 16 of Xg maps showing the effect of random field 
restoration 

The curve labeled "10% noise" shows the estimated parameters when 10% zero 

mean white Gaussian noise was added to the simulated flux density maps. The curve 

labeled "Smoothed Flux" shows the estimated parameters when 10% zero mean white 

Gaussian noise was added to the simulated flux density maps and the noisy flux 

density maps were smoothed using a 3 x 3 running window before estimating the 

parameters. All these cases were discussed thoroughly in Chapter 3. The fourth 

curve, labeled "RF Smooth" shows the estimated parameters when again 10% zero 

mean white Gaussian noise was added to the simulated flux density maps, but in 

this case the random field restoration procedure was applied before estimating the 
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parameters. 

The cut through row 16 of the estimated parameter maps was typical of similar 

cuts through other rows. A statistical analysis reveals that the MSE between the 

estimated parameters and their original values using the random field restoration 

are a small amount, less than 20%, larger than the MSE between the estimated 

parameters and the original parameters when the noisy flux density values were first 

smoothed as already discussed. This is visually shown in Figures 6.6, 6.7 and 6.8 

where the estimated parameter curves using the smoothing technique first, is almost 

at every pixel closer to the original curve than the estimated parameters using the 

random field restoration. These results are shown on a larger scale for row 2 and row 

16 for all three flux density maps in Figures 6.9, 6.10, 6.11, 6.12, 6.13 and 6.14. 

A question that comes to mind is why the results of the double smoothing tech

nique were not compared to the results of the random field restoration, but instead 

the results of the smoothed flux images were compared with the results obtained us

ing the random field restoration. The reason for this is as follows: Using the random 

field restoration, only the noisy flux density maps were smoothed and nothing was 

done to the estimated parameter maps. To compare the results of the random field 

restoration with the results of the double smoothing technique, it would be neces

sary to smooth the estimated parameter maps obtained by using the random field 

restoration technique also. Because the estimated parameters using the smoothed 

flux maps were closer to the original values than the estimated parameter maps using 

the random field technique, this was not necessary. 

In this chapter it was shown that, for the specific simulated temperature and 
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optical depth maps, adding zero mean white Gaussian noise to the resulting flux den

sity maps, the double smoothing technique performs better in estimating parameters 

from the images than the random field restoration technique. Much more investiga

tion is needed to make a general statement of comparison between the two techniques 

when white Gaussian noise is added to other digitized images. Even then, the area 

of colored noise has not been touched. 
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TO ESTIMATE - ROW 2 
(SlHOUnS DATA - 10» lOXaE) 

-I—I—1—I—I—I—I—I—I—1—1—I—I—I—I—I—1—1—I—I—I—I—I—I—I— 
2 3 4 5 6 7 8 9 1011121314 IS 16 17 18 19 20 21 22 23 24 26 26 27 28 

lOXSI 
COLUMM iniBER 

Fin SHOOTBED RT SMOOTH 

Figure 6.9: Cut through row 2 of Tq maps comparing the effect of smoothing 
the flux densities and restoring the flux densities using random field models 

TO ESTIMATE - R0W16 
(SIMULATED DATA - 10» XOtSE) 

I I I I I I I I I I I I I I I I I I I 1 I 1 I I I 

12345678 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 

0» lOISE 
COLUMN IDHBER 

SMOOTHED FLOX RT SMOOTH 

Figure 6.10: Cut through row 16 of T, maps comparing the effect of smoothing 
the flux densities and restoring the flux densities using random field models 



www.manaraa.com

119 

T1 ESTIMATE - ROWS 
(aiHOUTID DATA - 10* XQI9E) 

0.5 

1 2 3 1 5 6 7 8  9  1 0 1 1 1 3 1 3 1 1  I S  1 6 1 7 1 8 1 9  a o  2 1 2 2  9 3  2 1  2 5  2 6  2 7  9 8  

COLUm lUHBZR 
• OH lOISE A SnOOTHEO 7LUX X BT SMOOTH 

Figure 6.11: Cut through row 2 of T, maps comparing the effect of smoothing 
the flux densities and restoring the flux densities using random field models 

T1 ESTIMATE - R0W16 
(SIMULATED DATA - 10% XOISB} 

5 

« 

3 

2 

1 

0 
1 2 3 1 5 6 7 8  9  1 0  1 1 1 2 1 3  1 1 1 5 1 6  1 7  1 8  1 9  2 0  2 1  2 2  2 3  2 1  2 5  2 6  2 7  2 8  

COLUMN lUMBER 
• OK NOISE à SMOOTHED FLUX X SP SMOOTH 

Figure 6.12: Cut through row 16 of T, maps comparing the effect of smoothing 
the flux densities and restoring the flux densities using random field models 
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TB ESTIMATE - R0W2 
(SIHUUTBS DATA - 10» lOlSI} 

0.9 -

0.7 r 

0.6 * 
A 

I 

1 2 3 4 5 6 7 a  9 1011121314 IS 16171619 20 2122 23 24 25 26 27 26 

COLOUR imiBER 
• OS MOISZ A SMOOTHED rLDX X RF SHOOT» 

Figure 6.13: Cut through row 2 of Xg maps comparing the effect of smoothing 
the flux densities and restoring the flux densities using random field models 

TG ESTIMATE - R0W16 
(SinULATEO DATA - 10% XOISE) 

I 
g 0.9,-

g 0. 8 -
a 0.7 -
§  0 . 6  -

0.5 J 

1 2 3 4 5 6 7 8  9  1 0  1 1 1 2 1 3  1 4  I S  1 6 1 7  1 8 1 9  2 0  2 1  2 2  2 3  2 4  2 5  2 6  2 7  2 8  

COLDHR RDHBER 

• OX HOISE A SMOOTHED FLUX X m SMOOTH 

Figure 6.14: Cut through row 16 of Tg maps comparing the effect of smoothing 
the flux densities and restoring the flux densities using random field models 
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7. AN APPROXIMATE SOLUTION FOR NGC 7027 

TEMPERATURE AND OPTICAL DEPTH PARAMETERS 

7.1 Introduction 

It is appropriate to review what has been done so far. Using the observed flux 

density values, it was found that a direct solution of the derived flux density equations, 

using temperature model 2, results in temperature and optical depth parameters that 

are not physically realizable (Section 2.4). An attempt to obtain temperature and 

optical depth parameters that are physically acceptable by varying the observed flux 

density values by ±10% (Section 2.5), was also unsuccessful, because it was not 

possible to choose the correct solution from all the possible solutions. 

The double smoothing technique, applied to the observed flux density values, 

results in estimated parameter maps that correspond, in structure at least, quite 

well with previously obtained maps for the same parameters (Section 3.4). However, 

as indicated by simulation studies (Chapter 4), the actual numerical values of the 

estimated parameters using this technique, can be wrong by large margins. 

In all of the previous methods the approach was to solve the derived flux density 

equations exactly. The only approximations made were the smoothing of the flux 

density values and the smoothing of the estimated parameters in the double smoothing 
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technique. Even in this technique, using the smoothed flux density values, the derived 

flux density equations were solved exactly. 

An alternative approach would be to solve for the unknown parameters approx

imately. In this solution approximations would be made based on the physical char

acteristics of the nebula as well as knowledge of the estimated parameters obtained 

by previous studies. A discussion of such an approach follows. 

7.2 Approximate Solution for NGC 7027 Parameters 

7.2.1 Determination of Emission Measure Map 

As a first approximation, use the physical characteristic that the nebula is opti

cally thin at 2 cm. From a practical viewpoint, this means that at 2 cm wavelength, 

it is possible to see though the nebula. If, for example it was possible to add more gas 

at the back of the nebula, this would be reflected in the 2 cm observed flux density 

map. As a result, the 2 cm obsetved flux density map is a good approximation of the 

emission measure of the nebula. This is verified by using the same approximation in 

the derived mathematical equation for observed flux density at 2 cm. The optically 

thin characteristic at 2 cm is mathematically given by 

a02^6 < 1 

and a Taylor series expansion can be used for e' 

equation at 2 cm (see equation (2.15)) as follows 

(7.1) 

®02^6 to simplify the flux density 
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% = ^102(^0(1 - e-°02''6) - (^0 Vo2'-6 - ' + e-'^^'S)} 
®02'^6 

- •fio2^iro + rii (7.2) 

where all the symbols have the same meaning as discussed in Chapter 2. As a second 

approximation, assume that the observed flux density at 2 cm is not very sensitive to 

the temperature variation in the nebula. Physically this can be explained from the 

fact that it is possible to see through the nebula at 2 cm. As a result, assume that 

the temperature at the back of the nebula, Tq, is the same as the temperature at the 

front of the nebula, Tj. The resulting flux density equation at 2 cm is then given by 

•^02 = A'i02«02^6^1- (7-3) 

Osterbrock (1974) has shown that, assuming T to be constant with optical depth, the 

relationship between optical depth and emission measure, E, is given by 

0.0824 ^ 

Substituting equation (7.4) in equation (7.3) gives 

c _ ^102^020*0824 ETi 
•^02 - 2.1 yl.35 

'^06(Gffzrl 

_ ^102^020-0824 E 
(4.8851 )2-1TiO-35 ' 

This equation supports the assumption that the observed flux density at 2 cm is not 

very sensitive to changes in temperature through the nebula. A change in Tj from 
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10 000 K to 20 000 K results in only a 27% change in the value of By choosing 

a typical value for Ti obtained from the 2-D analysis by Basart and Daub (1987) of 

13 000 K, the emission measure of the nebula can be obtained from the 2 cm flux 

density map. This map is shown in Figure 7.1. 

Using the approximations above, this map is only a scaled version of the 2 cm 

observed flux density map. Figure 7.1 has the same double peak structure as the 

2 cm flux density map. This emission measure map corresponds almost 100% with 

the emission measure map obtained in the 2-D analysis of the nebula by Basart 

and Daub (1987) shown in Figure 7.2. They both have the same structure and the 

peak values are almost identical, 8.0 pc cm~^ obtained by Basart and Daub (1987) 

as compared to 8.35 pc cm~^ obtained by the approximate analysis. Because the 

observed flux density values are very low on the edges of the nebula, the signal to 

noise ratios for these values are also very low. Most of these low flux density values on 

the edges were ignored in the approximate solution and this give rise to the unnatural 

looking edges in the estimated parameter maps. 

7.2.2 Determination of Temperature T^-map 

To obtain a map of the nebula temperature at the front surface, the physical 

characteristic that the nebula is optically thick at 20 cm is used. From a practical 

viewpoint, this means that at 20 cm wavelength it is not possible to see through the 

nebula, all that can be seen is the front surface. 
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I  I  —V—I I ——T——r 

Peak value = 8.35 E07 
Contour levels at 99% 
90%, 75%, 50%, 25%, 10%, 
5%, 2%, 1%, 0.5% 

Figure 7.1: Emission measure contour map using approximate method and 
observed data 

42°02'08 

04 

00 

NGC 7027 . 
Log E 

01 *56 

09. 5® 

Right Ascension (1350.0) 
09.0 

Figure 7.2: Emission measure contour map obtained by Basart and Daub 
(1987) 



www.manaraa.com

126 

Mathematically, the optically thick characteristic at 20 cm is given by 

«20^6 ^ 1" (7-6) 

Still assuming that the temperature at the back of the nebula is the same as the 

temperature at the front of the nebula, Tq = Tj, the flux density equation at 20 cm 

(see equation (2.17)) can now be approximated as 

«20 = A-i2o{To(l-e-''20''6)-<Ik:iiil(a2or6-l+e-'"20'-6)} 
®20^6 

- ifl20ri(l - e-''20''6). (7.7) 

The expression for rg given by equation (7.4) can be used in equation (7.7) to 

solve for Tj. The emission measure, E, solved for above, was also used and the 

resulting map for temperature Tj is shown in Figures 7.3 and 7.4. This map for the 

temperature at the front surface of the nebula, Tj, has the same structure as the map 

obtained for temperature distribution by Basart and Daub (1987) which is shown in 

Figure 3.1. (Remember Basart and Daub (1987) assumed that the temperature is 

constant along the line of sight.) As a matter of fact, the map obtained for Tj using 

the double smoothing technique, shown in Figures 3.32 and 3.33, has an identical 

structure. All three maps show a maximum temperature region in the north east 

corner. 

The only difference between the three maps is the values of the peak temperature, 

14 000 K obtained by the approximate technique, 15 000 K obtained by the double 

smoothing technique and by Basart and Daub (1987). 
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Maximum value = 14000 K 
Ground level value = 0 K 

Figure 7.3: T, estimated parameter 3-D map using approximate method and 
observed data 

' ' ' 

Peak value = 14000 K 
Contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Figure 7.4: T, estimated parameter contour map using approximate method 
and observed data 
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This small difference is almost negligible. Also, the value of Tj ~ 13 000 K over 

a large portion of the map, supports the value used for Tj used in the evaluation of 

the emission measure map, E, previously. 

7.2.3 Determination of rg-map 

All the information necessary to obtain a map of the optical depth at 6 cm, rg, 

is available. The equation used to find the rg values is equation (7.4), evaluated at 

6 cm, and is given by 

0.0824 E 

~ (4.8551)2-lrl-35 

The values used for E and Tj in this evaluation, were the values previously solved for. 

The map for rg is shown in Figures 7.5 and 7.6. This map for rg, in both structure 

and maximum value, compares better with the map for the same parameter obtained 

by Basart and Daub (1987), shown in Figure 3.2, than the rg-map obtained by using 

the double smoothing technique, shown in Figures 3.34 and 3.35. This statement can 

be made because the map for rg obtained using the approximate method is more 

symmetric than the rg-map obtained using the double smoothing technique. 

Also the maximum value for rg obtained using the double smoothing technique, 

2.39, is a bit higher than what is physically expected. The maximum value of 1.69 for 

rg, obtained using the approximate method, is closer to the physically expected value 

of ~ 1.4.'However, even in this case, all three maps have the same basic structure. An 

investigation of the three maps show that they all three have the same double peaks 

in the northwest and southeast regions with a region of lower optical depth in the 
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Maximum value = 1.69 
Ground level value = 0.0 

Figure 7.5: x, estimated parameter 3-D map using approximate method and 
observed data 

Peak value = 1.69 
Contour levels at 99%, 90%, 
75%, 60%, 50%, 40%, 30%, 
20%, 10%, 5%, 2%, 1%, 
0.5% 

Figure 7.6: Xg estimated parameter contour map using approximate method 
and observed data 
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center of the maps. 

7.2.4 Determination of Temperature Tg-map 

The temperature at the back of the nebula, TQ, can be obtained from the flux 

density equation at 6 cm, using the values for rg and Tj previously solved for. The 

6 cm flux density equation is repeated here for clarity 

«06 = ^106(^0(1 - - 1 + «-"OS'S)} (7.9) 

The resulting Tg-map is shown in Figures 7.7 and 7.8. This map for the tem

perature at the back of the nebula, differs significantly from the map obtained by 

the double smoothing technique for the same parameter, shown in Figures 3.30 and 

3.31. The map for TQ obtained using the approximate technique, has nearly the same 

structure as the map for Tj obtained by using the same technique, shown in Figures 

7.3 and 7.4. The only significant difference is between the maximum values of the two 

individual maps, TQ has a maximum value of 16 000 K and has a maximum value 

of 14 000 K. There is obviously no map from Basart and Daub (1987) to compare 

these maps with. Physical information to choose one of the maps instead of the other 

as the "true" temperature map at the back of the nebula does not exist. 
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Maximum value = 16000 K 
Ground level value = 0 K 

Fgure 7.7: T* estimated parameter 3-D map using approximate method and 
observed data 

X X 

Peak value = 16000 K 
Contour levels at 99%, 90%, 
75%, 50%, 25%, 10%, 5%, 
2%, 1%, 0.5% 

Fgure 7.8: T® estimated parameter contour map using approximate method 
and observed data 
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However, a discussion with an astronomer, Dr. C. T. Daub (San Diego State 

University, private communication) led to a conclusion that the Tq- map obtained by 

the double smoothing technique seems more logical, due to its symmetric structure. 

This structure is almost the same as the double peak structure in the 2 cm observed 

flux density map. Remember that the nebula is optically thin at 2 cm wavelength and 

that the 2 cm observed flux density map gives an indication of the back surface of the 

nebula. The Tg-map obtained by the approximate technique, lacks this symmetry. 

7.3 Conclusion 

As a summary, the following conclusions can be drawn from the present analysis: 

1. The temperature maps made by three different techniques for the front surface 

temperature of the nebula, Tj, are almost identical and suggests that they 

represent the "true" temperature at the front surface of the nebula. 

2. The optical depth maps have a similar structure, but the one obtained with the 

approximate method is more believable due to the maximum value of 1.69 for 

optical depth which corresponds with previous studies. 

3. As already discussed, the Tg-map obtained by the double smoothing technique 

seems to be more acceptable. 

To find more accurate estimates of these unknown parameters, more observations 

of the nebula, at different wavelengths, are necessary. The extra data can then be 

used to smooth the noise in the data values, as already discussed. 
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7.4 Temperature Model 3 

Before stepping off the subject of estimating the nebula NGC 7207 tempera

ture and optical depth parameters, the question must be answered: "What happens 

when the temperature model 3 (Figure 2.1) is used to derive flux density equations?" 

The answer is real short. For many attempted calculations no physical allowable pa

rameters could be obtained using this model. This fact further supports the results 

obtained so far that temperature model 2 is a valid temperature model for the nebula. 



www.manaraa.com

134 

8. AUTOMATIC MEASUREMENT OF RAINDROP DIAMETERS 

8.1 Problem Statement 

In the previous chapters multiple digitized images were used to estimate the 

parameters in an equation describing some characteristic in the images. To extend 

this work, another parameter estimation problem using digitized image data were 

also investigated. In this case only one digitized image was used to find the unknown 

parameters. 

The problem is as follows: Given an image of raindrops (lighter spots) on a 

darker background (see Figure 8.1), determine the number of raindrops and their 

individual sizes from this image automatically by using image processing techniques. 

It is important to note that some of the raindrops may overlap. The approach used 

must be able to detect these overlapping raindrops and give the actual sizes of the 

individual raindrops. 
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Figure 8.1: Raindrop image 
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8.1.1 Approach 

This problem can be broken down into two parts: 

1. The image processing system must be able to distinguish between the raindrops 

and the background. 

2. The image processing system must be able to find the individual raindrops in 

the image after the background has been removed, and determine their actual 

sizes. As already mentioned, this includes that the image processing system 

must be able to detect overlapping raindrops and determine the sizes of the 

individual raindrops in a larger overlapping raindrop. 

8.2 Distinguish between the Raindrops and the Background 

8.2.1 Thresholding 

As can be seen from Figure 8.1, the raindrops and the background have different 

gray levels. Therefore, a bimodal image gray-level histogram is expected so the most 

obvious approach to distinguish between the raindrops and the background would be 

to use thresholding. 

In practice it is found that this approach does not work. There are a number of 

reasons: 

1. When looking at the original image, it can be seen that there are dark pixels 

inside the lighter raindrops as well as light pixels in the darker background. 

When using a thresholding technique, the dark pixels inside the raindrops will 
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remain dark and the light pixels in the background will still be light. This will 

result in distorted raindrop areas and false raindrops respectively. 

2. It is also clear from Figure 8.1 that the background gray level is not uniform. 

This is due to the process by which the background coloring was sprayed onto the 

original paper. As a result it is possible that the average gray level in a portion 

of the background can be lighter than the average gray level inside a raindrop at 

another position. This contributes to the fact that the image histogram is not 

bimodal and a threshold cannot be found as discussed to separate the raindrops 

from the background. 

As an alternative, several different thresholds were chosen by trial and error, 

all giving the same general result. When the threshold is chosen to include all the 

raindrop information in the image, some background information is also included. 

When choosing a threshold to get rid of all the background, some raindrop information 

is also lost. In both cases, the actual raindrop areas in the original image are distorted. 

Therefore, this technique cannot be applied if it is necessary to find accurate estimates 

of the raindrop positions and sizes in the original image. 

8.2.2 Smoothing 

In an attempt to improve the thresholding technique, the original image was first 

smoothed using a 3 x 3 running window with equal weight assigned to all 9 cells in 

the window. The idea behind this approach was to get rid of the light pixels in the 

background and the dark pixels inside the raindrops. However, it was found that the 

image gray-level histogram was still not bimodal. Thresholding using different chosen 
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threshold values resulted in the same general problems as for the original unsmoothed 

image. 

8.2.3 Morphology 

To distinguish between the raindrops and the background, it would be necessary 

to use a technique that depends on local properties of an image instead of global 

properties, like the thresholding technique. Such a technique is provided by applying 

mathematical morphology to the raindrop image. The specific operation that was 

used from the field of mathematical morphology was the operation of opening of a 

gray scale image. Gray scale opening of an image is defined as the dilation of the 

eroded image using the same structuring element. For a definition of these basic 

terms in mathematical morphology, consult, for example, Serra (1982). 

The opening of the raindrop image was used to estimate the background in the 

image. The background is defined as those parts of the image that do not include any 

raindrops. In this specific case, the raindrop image was opened using a hemispherical 

structuring element which was bigger than the largest raindrop in the image. The 

opened image, which was an estimate of the background, was then subtracted from 

the original image. The resulting image was the image containing only the raindrop 

information. 

By applying this technique, it was possible to get rid of all the background, but 

still keeping all the raindrop information almost undisturbed. 
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8.3 Distinguish between Individual Raindrops and Find their Actual 

Sizes 

8.3.1 The modified Hough Transform 

An investigation of the images to be analyzed leads to the following conclusion: 

The individual raindrop areas can be treated as circular without much loss in accuracy. 

To determine exactly how much, is a function of the specific image used. For the image 

shown is Figure 8.1, the loss in accuracy is less than 5% in area. This was determined 

by comparing the areas of possible circles to be used with the area of the raindrop 

under consideration. By using this approximation, the first method used for finding 

the individual raindrops and their sizes was the modified Hough Transform. 

8.3.1.1 Method Description A detailed description of the Hough Trans

form can be found in Gonzalez and Wintz (1987, Section 3.7), as well as a modified 

version to detect circles in the x — y plane. Only a summary of the last method will 

be given here. 

Consider the case of only one circle in the x — y plane. The general equation for 

this circle is given by 

[ x  -  c i ) ^  +  [ y  -  C 2 ) ^  =  c \  (8.1) 

where and eg &re the x and y coordinates of the circle respectively and eg is the 

radius of the circle. Form a three dimensional parameter space, cj, C2, eg space, 

where the dimensions of cj and C2 are the same as for the original image and the 

dimension of eg is equal to the maximum possible radius of the circle to be detected. 
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Divide the cj, eg, eg space into cubelike cells of the form A(i, j, k), also known 

as accumulator cells. For each pixel in the x, y plane that is an element of the 

circle whose position and size is to be found, perform the following calculation: Use 

all possible values for cj and C2 that lie within the image to calculate the value of 

C3 that satisfies equation (8.1). After each calculation, increment the corresponding 

accumulator cell, that is: if values of C]^ = ( and C2 = r results in a value of C3 = s 

for a specific pixel (®,y) then set 

.4((,r,a) = .4((,r, a) + 1 (8.2) 

At the end of the procedure the cell Cj, c^, Cg with the highest count is an estimate 

of the position and radius of the circle to be found: Cj and will be the x and y 

coordinates of the circle and Cg will be the radius of the circle. 

8.3.1.2 Application of Method To be able to use the modified Hough 

Transform to find the individual raindrops and their sizes, the edges of the raindrops 

must first be found. This will result in the circles in the x, y plane to be used. The 

edges were found by applying the Sobel edge detector operators (Gonzalez and Wintz, 

1987, Section 7.1.3.1) to the image after the background was removed by morphology 

techniques. The background removal created a bimodal histogram of the gray-levels. 

A threshold value was determined by choosing a gray-level value midway between 

the two peak gray-level values. Thresholding was applied to the image obtained by 

the Sobel operators using this threshold to get rid of any artifacts, due to the Sobel 

operators. 

The next step was the actual application of the modified Hough Transform to 
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the image containing the edges. The resulting c^, eg, cg space was used to find the 

individual raindrop positions and their sizes as follows: 

At each pixel in the image we are concerned about the size of the circle most 

likely to be centered at that pixel. This means for each c\ and 03 parameter, we are 

interested in the value of 03 that contains the highest count. Store this value of cg 

for each (ciicg) pixel as well as the count inside the corresponding accumulator cell. 

The problem can now be considered as a three dimensional problem: Each pixel 

(cj,c2) has a count that gives the number of pixels in the original image that will lie 

on a circle whose center is at cj, eg. The corresponding value of 03 gives the radius 

of that circle. 

The raindrop patterns can be found by a process of elimination: 

1. Find the pixel in the image that has the highest count. 

2. Remove the raindrop by setting the count in all cells within a radius C3 from 

pixel (c^,C2) to zero. 

3. Store the value of c^, cg and 03 of the removed raindrop. 

Continue this process until a threshold value is reached for the number of counts 

in the accumulator cells. 

8.3.1.3 Special Considerations Although the modified Hough Transform 

works quite well when the position and size of only one raindrop is to be found, 

problems can arise when the image has two or more raindrops that are located near 

each other or overlap. In this case the method can result in "ghost" raindrops. 
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This means the direct application of the modified Hough Transform can result in 

accumulator cells with a high count that is not situated in a raindrop in the original 

image. An example is given in Figure 8.2. 

Figure 8.2: "Ghost" raindrops. The left two circles represent raindrops. The circle 
C is an artifact 

The edges of the two overlapping circles result in a cell with a high count at 

position C. This will result in a "ghost" raindrop as indicated. 

I suggest the following change in the detection procedure in Section 8.3.1.2: 

Consider only pixels inside raindrops in the original image as candidates for the 

center of raindrops. This is a logical step and gets rid of all "ghost" raindrops. The 

complete detection procedure is then as follows: 

1. Find the pixel (cj,C2) in the image that has the highest count. 

2. Make sure this pixel is inside a raindrop in the original image. 

3. Remove the raindrop by setting the count in all cells within a radius eg from 

pixel (c^,C2) to zero. 
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4. Store the value of cj, C2 and cg of the removed raindrop. 

The application of this technique to practical situations results in another prob

lem: When applying the Sobel edge detectors to the original image, the resulting 

edges are not "thin". What is meant by this is that the edges can be 2 or more pixels 

wide. Although this is satisfactory when the only goal is to enhance the edges visually 

in an image, it is not satisfactory when trying to estimate parameters from an image. 

The problem with the wide edges is that it does not describe a unique circle in the 

.r, y plane. 

By using all the pixels in the "wide" edges, a number of circles can be fitted 

through the detected edges, and these circles are not concentric and do not all have 

the same radius. This is an unsatisfactory situation. 

It was necessary to use a technique to find "thin" edges of the raindrops. Such 

a technique was developed by Bergholm (1987). It is known as edge focussing. By 

applying this technique, edges of the raindrops were found that were only one pixel 

thick. 

A summary of the edge focussing technique will be given next. In the first step 

the original image is blurred using a Gaussian mask of size Sctq where <t is generally 

called the resolution parameter. A value of «tq = 4.0 was used in most images and 

resulted in a window of size 31 x 31 (must be an odd number for symmetry). The 

function of this blurring is to filter out noise in the image and to get rid of unnecessary 

detail. The next step is to use the Sobel edge detector operators to find the gradient 

at each pixel in the image. This information is used to calculate the magnitude 

and angle of the gradient at all pixels. The resulting angle at each pixel is then 
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grouped into one of six classes depending on which one it is closest too: 0, 30, 60, 

90, 120 or 150 degrees. This angle is used to find neighbor pixels to investigate. The 

magnitude of the neighbor pixels lying on both sides of a specific pixel on the angle 

line are compared with the magnitude of the pixel under consideration. All pixels for 

which the neighbor pixels have either both higher or both lower magnitude values, 

are marked with a one, all other pixels in the image are marked with a zero. This is 

done because the pixels found in the previous step are lying either on an edge or in 

a valley. This image of one's and zero's is called the initial edge image. 

In the next step the original image is blurred with a smaller mask of size a = 

<TQ - 0.8. All the previous steps are then repeated with the exception that only the 

edge pixels (marked one) and their 8-neighbors are used to look for new maxima and 

minima. Old edges are discarded and only the new ones registered. 

This process is repeated for decreasing values of <t  down to cr = 0.8 (7 x 7 window 

size). The resulting image gives the thin edges. As a result, the edges describe only 

one circle in the ®, y plane and these edges were suitably used by the modified Hough 

Transform, 

8.3.1.4 Simulation Results The whole technique was first applied to a sim

ulated image that contains 3 overlapping raindrops as well as a couple of other rain

drops. The simulated image was computer generated. All raindrops in the simulated 

image were 100% circular. The image background gray level was set equal to a value 

of 20 on a 0 - 255 scale and the raindrop gray levels were set to 255. 

In the simulated case the modified Hough Transform technique was able to find 



www.manaraa.com

Figure 8.3: Simulated image 

the position and size of the individual raindrops to within 0.01% so that for all 

practical purposes the image generated from these data corresponds 100% with the 

simulated image in Figure 8.3. This is true because the positions of the simulated 

raindrop centers, (cj, eg), and the radii of the simulated raindrops, C3, found by the 

modified Hough Transform, corresponded exactly with the values used to generate 

the simulated image. 

8.3.1.5 Practical Results Application of the modified Hough Transform, as 

discussed in the precious sections, to an actual raindrop image, gave unsatisfactory 

results. The detected raindrop areas do not correspond well to the actual raindrop 

areas. Further investigation led to the conclusion that the correct functioning of the 
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modified Hough Transform requires that the edges to be used must describe a near 

perfect circle in the x, y plane. Even a small deviation from this constraint results 

in false positions and areas detected by the modified Hough Transform. It is clear 

from Figure 8.1 that although the actual raindrops are almost circular in form, they 

are not perfectly circular. The small deviation is enough to lead to wrong results as 

found by the application of the modified Hough Transform. 

8.3.2 A Robust Method 

It is clear that it is necessary to find an alterative method that is more robust 

with respect to the raindrop geometry to determine the position and sizes of the 

raindrops in the image accurately. I suggest the following method: 

As a first step, remove the background in the original image by using mathe

matical morphology techniques as already described. The gray-level histogram of the 

resulting image is bimodal and thresholding can be used to get a binary image as 

follows 

g { x ,  y )  =0 i f  f ( x ,  y )  <  T h  

= 255 i f  f { x ,  y )  >  T h  (8.3) 

where 

g { x  , y )  =  binary image, 

/ ( « ,  y )  = original image after mathematical morphology, and 

Th is the threshold. 
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As a result, all the pixels in the original image that are inside raindrops will have 

gray-level values equal to 255 and all other pixels will have a gray-level value of 0. 

The individual raindrop positions and their sizes can be found by using the 

following iterative technique which will be called the robust method: 

1. (a) At each pixel in the binary image, find the number of pixels inside a circle 

with a radius of 1 pixel, centered at the pixel considered, that as a gray 

level of 255. If this number of pixels is more than 95% of the total number 

of pixels inside a circle of radius of 1, increase the radius size by 1 and 

repeat. 

(b) Continue until the percentage of pixels inside the circle as already described 

is less than 95%. 

(c) Reduce the value of the radius used last by 1. This will give the size of the 

largest possible raindrop centered at the specific pixel. 

2. The next step is to find the raindrop positions and their sizes. This can also be 

done by using an iterative procedure: 

(a) Find the radius of the largest possible circle in the image as determined in 

step 1. Using this radius, determining the area of the largest raindrop in 

the image. The origin of this raindrop will be at the same pixel location. 

(b) Remove this raindrop by setting the sizes of all possible circles at pixel 

locations inside the radius of the raindrop being removed to zero. 

(c) Repeat for all possible raindrops in the image down to raindrops with a 

radius of 1 pixel. 
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This method is much more robust and approximates ail raindrops in the original 

image as circular areas even though the actual raindrop areas may deviate from 

circular. The closer the raindrops in the original image are to being circular, the 

more accurate this approach is. 

8.3.2.1 Practical Application Figure 8.4 shows a cut of an observed image, 

digitized using gray levels in the 0 - 255 range. This image includes many overlapping 

raindrops and we can see that the individual raindrop areas differ significantly. By 

investigation of this image it is clear that the gray levels inside raindrops at certain 

portions of the image are darker than the gray levels of the background at other 

parts of the image. This last observation suggests that mathematical morphological 

techniques must be used to get rid of the background. 

Figure 8.5 shows the same image after mathematical morphology has been ap

plied. It can be seen from this image that the morphological technique was able 

to separate the raindrops from the background and the resulting image is clearly 

bimodal. It is also clear form Figure 8.5 that the mathematical morphological tech

nique did not distort the raindrop areas in the original image, Figure 8.4. A gray-level 

histogram was drawn for the image in Figure 8.5. This histogram was bimodal, as 

expected, and by using the gray-level value between the two peaks in the histogram as 

a threshold level, the binary image in Figure 8.6 was obtained. This image contains 

the same information as Figure 8.5, but all the raindrop areas were now set equal to 

gray-level value 255 and the background was set equal to gray level 0. The binary 

image in Figure 8.6 was used with the robust method to find the raindrop areas and 

their sizes. 
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Figure 8.4: Observed image 

Figure 8.5: Background removed by morphology 
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Figure 8.6: Binary image after thresholding 

Figure 8.7: Generated image 
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Figure 8.7 shows the resulting image, obtained by computer generation, using the 

results of the robust method to determine raindrop locations and sizes. By comparing 

Figure 8.7 with Figure 8.4, the effectiveness of the robust method can be seen. Most 

of the raindrops in the original image were detected, the only exceptions were the 

raindrops that were smaller than a circle with radius of 1 pixel. However, Figure 8.7 

shows that the raindrop edges were not smooth, due to a number of small raindrops 

attached to the edges of larger raindrops. This problem will be discussed further in 

the next section. 

8.3.2.2 Improved Robust Method The method discussed in Section 8.3.2 

works perfectly when all the raindrops are 100% circular and there are no overlapping 

raindrops. When a raindrop is not 100% circular, the method will fit the largest 

possible circle in a given raindrop area. This technique will result in errors if certain 

precautions are not taken. This is best explained by an example: Look at the raindrop 

and the largest circle fitted inside this raindrop, shown in Figure 8.8. 

After fitting the largest possible circle inside the given raindrop, there still re

fitted circle 

raindrop 

Figure 8.8: Raindrop with fitted circle 



www.manaraa.com

152 

mains some raindrop area not accounted for. By applying the technique as already 

discussed, another small circle is fitted in this remaining raindrop area as shown in 

Figure 8.9. 

Figure 8.9: Raindrop with false fitted circle 

One way to get around this problem is to set a limit on the size of the smallest 

circle to be fitted in the entire image. Although this technique solves the problem 

above, it has the disadvantage of not being able to detect the small raindrops that 

are present in some images. 

It seems that the best way to solve this problem is to detect all possible circles 

in an image down to a radius of 1 pixel, but use only those small drops that do not 

touch larger drops. Application of this modification to the same image as in Section 

8.3.2.1, gives the results shown in Figure 8.10. It can be seen from this image that 

the modification gets rid of the problem of small drops attached to larger drops in an 

image, but that it does not reduce the effectiveness of the robust method to detect 

all the raindrops in this specific image. 

By comparing Figure 8.7 with Figure 8.10, it can be seen that in Figure 8.10 the 

edges of the larger raindrops are smooth, without small drops attached to them. This 
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was not true in Figure 8.7 where a number of small (false) raindrops were attached 

to the larger raindrops. Using the modified robust method it is not possible to detect 

very small raindrops that are very close to, or touching, other raindrops. However, 

the tradeoff between the detection of very small raindrops and the improved accuracy 

in measuring remaining raindrops is worthwhile. 

8.3.2.3 Conclusions Although this method doesn't suffer form the same 

shortcomings of the modified Hough Transform (and does not require that the rain

drop edges be perfect circles) it is very sensitive to the percentage of pixels inside a 

circle that is actually part of the original raindrop. When this percentage is too low, 

it can result in wrong detected raindrops when 2 raindrops are overlapping. The 95% 

value used in this project was found to be a good predicted value to be used and gives 

satisfactory results, as already shown. 

Figure 8.10; Modified robust method 
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9. GENERAL PARAMETER ESTIMATION USING DIGITIZED 

IMAGES 

9.1 Introduction 

From the analysis of the radio astronomy problem in the previous chapters, it 

was found that the double smoothing technique gives the best parameter estimates 

when using simulated flux density values that were contaminated with zero mean 

white Gaussian noise. Also, it was found that using the double smoothing technique, 

estimated parameter maps could be obtained from the observed flux density values 

of nebula NGC 7027 that compare reasonably well with parameter maps determined 

using other techniques (Chapter 3). 

In this chapter an investigation will be done to find the effectiveness of the 

double smoothing technique to estimate parameters from digitized images in which 

the characteristics of interest are described by two general classes of equations often 

encountered in engineering problems, namely logarithmic equations and polynomial 

equations. It will be assumed that these equations describe a physical characteristic 

in the images, as before, and the parameter estimation will be done on a pixel- to-pixel 

basis. The investigation will be constrained to the situation of three digitized images 

available to estimate three unknown parameters in three equations. The equations 
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used will be chosen to be as general as possible. The results obtained using the noisy-

data values directly in the parameter estimation problem will be compared with the 

results obtained using the double smoothing technique. 

9.2 Logarithmic Equations 

9.2.1 Problem Statement 

Problems that obey a logarithmic relationship were investigated by using the 

following set of equations 

yi = /n(a;i)^l + <2®2 + -eg = tiln{xi) + 12^2 4- rg (9.1) 

1/2 = /n(xi)'3 + t^x2 + + zg (9.2) 

1/3 = In(xi)^^ + tQX2 -f ®3 = t^ln(xi) + fgzg + ®3 (9.3) 

where 

ij, «2» variables, and 

^1> ^2' ^3; ', (g are constants (known). 

By substituting 14 for ln{x]^), three linear equations in three unknowns result 

and a unique solution for 14, xg and Z3 can be obtained as long as the three equations 

are linearly independent. The resulting solution for xi will then be given by 

xi = e®4. (9.4) 



www.manaraa.com

156 

9.2.2 Parameter Estimation in Logarithmic Equations 

To evaluate the effect of the double smoothing technique on the estimation of pa

rameters from digitized images using the defined logarithmic equations, a simulation 

study was undertaken. The way the study was done, is as follows. First of all, three 

x-parameter images were generated for the 0:4, X2 and zg parameters. These images 

were each of size 32 x 28 pixels and in each case it was assumed that the values in 

the individual images lay on a 2-D Gaussian curve. The equation used to generate 

the images was 

z(*, j )  =  (9.3) 

were the constants for the individual images were arbitrarily chosen as 

Image K x q  m 

iZî^ 1 500 15 15 

x 2  1 000 20 20 

®3 2 000 10 25 

The simulated x-images are shown in Figures 9.1, 9.2 and 9.3. These simulated 

x-images were then used to generate three y-images by using equations (9.1), (9.2) 

and (9.3) to find y-values at each pixel location. 

The constants ^2' ^3» • • • >^6 arbitrarily chosen, the only constraint was 

that the resulting three equations must not be linearly dependent. The values chosen 

for these constants were = 0.7, (2 = 1-7, (3 = 0.8, = 1.4, (g = 0.9 and 

(g = 2.3. 
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Maximum value = 1500 
Ground level value = 0 

Figure 9.1: Logarithmic X, simulated map 

Maximum value = 1000 
Ground level value = 0 

Figure 9.2: Logarithmic Xj simulated map 

Maximum value = 2000 
Ground level value = 0 

Figure 9.3: Logarithmic Xg simulated map 
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The resulting y-images are shown in Figures 9.4, 9.5 and 9.6. These y-images 

were then contaminated by adding zero mean white Gaussian noise, having a standard 

deviation of 10% of the individual pixel values, to each pixel in all three y-images. 

The noisy y-images are shown in Figures 9.7, 9.8 and 9.9. 

The noisy y-images were used to estimate the x parameters in the original sim

ulated x-images. First, the x-parameters were estimated using the noisy y-values 

directly. The double smoothing technique was then used to estimate the same x-

parameters. A cut was arbitrarily made through row 16 of the resulting estimated 

parameter images and the result is shown in Figures 9.10, 9.11 and 9.12. This cut 

was typical of similar cuts made through the estimated parameter images at different 

rows. The effect of the double smoothing technique can clearly be seen. The curves 

labelled "0% noise" are the reference curves. The curves labelled "10% noise" show 

the results of estimating the x-parameters from the noisy y-images directly and the 

curves labelled "10% DS" show the results of estimating the x-parameters from the 

noisy y-images using the double smoothing technique. 

9.2.3 Statistical Analysis 

To investigate the effectiveness of the double smoothing technique qualitively, 

the variances of the estimated parameters «4, zg &nd zg, using the noisy image data, 

were compared with the variances of the same estimated parameters using the double 

smoothing technique. 
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Maximum value = 4320 
Ground level value = 0 

Figure 9.4: Logarithmic Y, generated map 

Maximum value = 4180 
Ground level value = 0 

Figure 9.5: Logarithmic Y, generated map 

Maximum value = 5150 
Ground level value = 0 

Figure 9.6: Logarithmic Yg generated map 
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Maximum value = 5290 
Ground level value = G 

Figure 9.7: Logarithmic noisy Y, map 

Maximum value = 4920 
Ground level value = 0 

Figure 9.8: Logarithmic noisy Y, map 

Maximum value = 6000 
Ground level value = 0 

Figure 9.9: Logarithmic noisy Yg map 
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X1 ESTIMATE - ROW 18 
acXURITMIIC NUATIONQ 
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Figure 9.10: Cut through row 16 of X, estimated parameter maps, logarithmic 
equations used 

If 
i! 
at 

X2 ESTIMATE - ROW 16 
ClOOARITMIIC EQUATIONS) 

I I "1" ' I r I"'I I T'T I "I" I 1 I "I" 
a 9 10 11 ia 13 14 IS 16 17 19 19 20 21 aa 93 24 99 SB 27 99 

COLUMN MAOiR 
+ 1» foisi A in DS 

Figure 9.11: Cut through row 16 of Xg estimated parameter maps, logarithmic 
equations used 
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X3 ESTIMATE - ROW 16 
CLOOARITWIC EOMTIOW) 

1—I—I—PT—I—I—I—I—I—I—I I I I—1—1—I—I I I I—I—1—1—r 
1 i 3 4 S • 7 9 a 10 11 1Ï 13 14 1S ia 17 ia 1* Mai 23 n M M ÏI 37 H 

COLUMN NUMR 
D m NOIM + IS* NOISi A IM OS 

Figure 9.12: Cut through row 16 of X3 estimated parameter maps, logarithmic 
equations used 

The variance of the estimated parameters 14, ®2 and zg, for the direct approach, 

were first determined by using the following approximate formula given by Hahn and 

Shapiro (1967) 

n 
Fa7'(®--) ~ ^ —)2Kar{î/j-) (9.6) 

i=l 

where = h{xi, X2, ...,®n). 

A numerical example for a specific situation is given 
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Parameter h H ^3 k (5 *6 ®4 ®2 ®3 

Value Used 0.7 1.7 0.8 1.4 0.9 2.3 1500 1000 2000 

The resulting values for i/j, y2 and yg are = 4750; yg = 4600 and yg = 5650. 

Assume that zero mean white Gaussian noise with a standard deviation (STD) of 

10% of the individual values of yg &iid yg was added to the values of yj, 

and 2/3 at each pixel location respectively. By using the approximate formula in 

equation (9.6), the following values for the standard deviations of X4, zg and zg were 

obtained 

Variable STD STD(%) 

4 469.51 297.97 

®2 982.53 98.25 

®3 2 926.39 146.32 

The column "STD(%)" gives the standard deviation of the x-parameters as a per

centage of the nominal values used for these parameters. 

In an attempt to verify these results for the standard deviation of the x-parameters 

independently, a Monte Carlo analysis of the same situation was done. The results 

of the Monte Carlo analysis, at the 5% confidence level, was as follows 

Variable STD STD(%) 

X4 4 460 297.33 

X2 933 93.30 

n 3 030 151.50 
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It is clear that in this specific case the standard deviation of variables 034, zg 

zg evaluated using the two different methods are almost identical. It is clear from 

these analyses that zero mean white Gaussian noise with a standard deviation of 

10% of the individual y-parameter values results in enormous errors in the estimated 

x-parameters. 

In order to find the standard deviation of X4, zg and X3 at different values of 

these variables, the approximate formula was used to generate the graphs in Figures 

9.13, 9.14 and 9.15. From these graphs it can be seen that the standard deviation 

of the estimated parameters are very sensitive to the nominal data values of the x-

parameters used. In general, however, as a percentage of the nominal values used, the 

standard deviation of parameter increases with an increase in the nominal values 

of parameters zg and X3. The standard deviation of parameter ®2 decreases with an 

increase in the nominal value of parameter zg &nd increases with a decrease in the 

nominal value of parameter zg. The standard deviation of parameter zg increases 

with an increase in the nominal value of parameter X2 and decreases with an increase 

in the nominal value of parameter zg. The same situation was also addressed when 

the parameters were estimated using the double smoothing technique. The resulting 

graphs ate shown in Figures 9.16, 9.17 and 9.18. These graphs were generated using 

a Monte Carlo analysis. It can be seen that after the application of the double 

smoothing technique the standard deviation of the estimated parameters are on the 

average only 1/4 compared to the case before. Therefore, the double smoothing 

technique succeeds to find better estimates from noisy image data also in the case of 

logarithmic equations used to describe image characteristics. 
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682% 

422% 

465% 

Figure 9.13: Standard deviation of X* estimated parameters using logarithmic 
equations 

• 67% 

139% A 

/ \ / \  K. ' 

Figure 9.14: Standard deviation of X, estimated parameters using logarithmic 
equations 
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962% 

411% 

102% 

170%,, 

Figure 9.15: Standard deviation of X3 estimated parameters using logarithmic 
equations 

153% 

Figure 9.16: Standard deviation of estimated parameters using logarithmic 
equations determined by double smoothing technique 
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30% 

17% 

17% 

14% 

Figure 9.17: Standard deviation of X, estimated parameters using logarithmic Standard deviation Figure ofX, 
equations determined by double smoothing technique 

estimated 9 17; 

222% 

95% 

42% 

Figure 9.18: Standard deviation of Xg estimated parameters using logarithmic 
equations determined by double smoothing technique 
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9.2.4 Conclusion 

The analysis in this section concentrated on the standard deviations of the pa

rameters ®4, X2 and zg. However, the standard deviation of the parameter xi in the 

original equations used, must still be determined. 

Remember that 

It has already been shown that the standard deviation of the estimated parameter 

X4 is very large, even when the double smoothing technique is used. Keeping the result 

of equation (9.8) in mind, it can be seen that the estimation of parameter xi in the 

logarithmic equations defined in this analysis, from digitized image data, is worthless 

when the data values are noisy, even after the application of the double smoothing 

technique. The best solution would be to obtain more data measurements. 

9.3 Polynomial Equations 

9.3.1 Problem Statement 

Problems that obey a polynomial relationship were investigated by using the 

following set of equations: 

(9.7) 

and therefore 

Far (x j )  =  (9.8) 

x j  >  0  (9.9) 
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> 0 (9.10) 

®1 > 0 (9.11) 

where 

aî2» ®3 9^re variables, and 

(g»" constants (known). 

The way these three equations, in three unknowns, were solved exactly, was to 

find the first order Taylor Series expansion of each equation in and solve the 

resulting equations for the three unknown parameters. These approximate solutions 

were then used in a Newton type procedure to solve for the unknown parameters 

exactly. 

9.3.2 Parameter Estimation in Polynomial Equations 

A similar study as the one for the logarithmic equations was done to find the effect 

of the double smoothing technique on the estimation of parameters, from digitized 

images, using polynomial equations. Three x-parameter images were generated for 

the Z2) 2:3 parameters. Equation (9.5) was again used in this simulation and 

the constants chosen in this case were 
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Image K XQ 2/0 

XI 25 000 15 15 

®2 5 000 20 20 

®3 19 000 10 25 

The a;^-image was then shifted up by adding 40 000 to the values of the individual 

pixels. This was done to ensure that the estimated ajj-parameters from the noisy data 

were still positive, because equations (9.1), (9.2) and (9.3) are not defined for negative 

X 2-parameters. 

The simulated x-images are shown in Figures 9.19, 9.20 and 9.21. The y-images 

obtained from these x-images, using equations (9.9), (9.10) and (9.11), are shown in 

Figures 9.22, 9.23 and 9.24. 

The same values were chosen for the constants before. Zero 

mean white Gaussian noise with the same characteristics as in Section 9.2 was added 

to these images. The resulting noisy images are shown in Figures 9.25, 9.26 and 9.27. 

The results of the different estimation procedures are displayed the same way as 

before in Figures 9.28, 9.29 and 9.30 for a similar cut through the estimated parameter 

images at row 16. The symbols used in these figures also have the same definitions 

as in Section 9.2. Again it can be seen that the double smoothing technique improve 

the accuracy of the estimated parameters dramatically. 
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9.4 Conclusion 

Although only two specific situations were addressed, both these situations sup

port the results obtained before in the radio astronomy problem. 

The accuracy of the estimated parameters, using the double smoothing technique, 

is much better than the accuracy of the same parameters using the noisy image. When 

estimating parameters from noisy image data, the double smoothing technique seems 

a good place to start. 
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Maximum value = 65000 
Minimum value = 0 

Figure 9.19: Polynomial X, simulated map 

Maximum value = 5000 
Ground level value = 0 

Figure 9.20: Polynomial X, simulated map 

Maximum value = 19000 
Ground level value = 0 

Figure 9.21: Polynomial X, simulated map 
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Maximum value = 26200 
Ground level value = 0 

Figure 9.22: Polynomial generated map 

Maximum value = 30200 
Ground level value = 0 

Figure 9.23: Polynomial Y, generated map 

Maximum value = 43300 
Minimum value = 18300 

Figure 9.24: Polynomial Yg generated map 
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Maximum value = 31300 
Ground level value = 0 

Figure 9.25: Polynomial noisy Y, map 

Maximum value - 35400 
Ground level value = 0 

Figure 9.26: Polynomial noisy Y, map 

Maximum value = 50700 
Ground level value = 0 

Figure 9.27: Polynomial noisy Yg map 
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XI ESTIMATE - ROW 16 
(POLnoniAb EQUATIOIIS) 
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Figure 9:28: Cut through row 16 of X, estimated parameter maps, polynomial 
equations used 
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Figure 9:29: Cut through row 16 of X% estimated parameter maps, polynomial 
equations used 



www.manaraa.com

176 

X3 ESTIMATE - ROW 16 
(FOLnOHIAL EQUATIMS) 

IM 

lie 
IM 

*00 

IM 

1 2 3 4 5 6 7 8  9  1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 3 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8  
COLUHR ItniBZB 

• OX X0I3E * lOK NOISE A 10% DS 

Figure 9:30: Cut through row 16 of X, estimated parameter maps, polynomial 
equations used 
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10. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

10.1 Conclusions 

A number of conclusions can be drawn from the work done in this dissertation: 

1. From the parameter estimation problem using the VLA data it was found that 

it is very difficult to estimate n parameters in n nonlinear equations when using 

noisy observed data values. The direct solution of the n parameters let to 

results that were not physically possible. The best estimated parameters were 

obtained by using the double smoothing technique defined in this dissertation. 

These results were even better than the results obtained when the technique of 

random field restoration was used to restore the noisy simulated flux density 

maps as was verified by simulation studies. 

2. The technique developed to estimate the locations and sizes of raindrops, as col

lected on a sheet of paper, gave very satisfactory results for the images analyzed. 

However, the accuracy of this technique depends on how close the raindrop areas 

are from being circular. 

3. As a general result it was concluded that the estimation of n parameters from 

n noisy digitized images have large errors, even when the double smoothing 
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technique is used. This was verified for two specific types of equations of

ten encountered in engineering, namely polynomial equations and logarithmic 

equations. The actual estimation errors, however, are a function of the specific 

equations used. 

10.2 Suggestions for Future Work 

1. To find the "true" temperature at the back of nebula NGC 7027, it would be 

necessary to obtain more observations of the nebula at different frequencies. 

This would help to reduce the errors in the estimated parameters. At this point 

in time it is not possible to verify if the temperature map obtained using the 

double smoothing technique is more correct than the temperature map obtained 

using the approximate technique. 

2. To add more credibility to the work done on the estimation of the raindrop 

locations and sizes, it would be necessary to analyze many more raindrop images 

using the robust method to draw statistical conclusions about the accuracy of 

this method. It is also necessary to determine if this method can be used to 

detect areas that are not circular. 

3. Concerning the general estimation of n parameters from n digitized images, 

much work still needs to be done. The work in Chapter 9 must be extended to 

include many more basic equations generally encountered in engineering. In the 

situation when more images are available than unknowns, work also needs to be 

done to find the accuracy of estimated parameters using the double smoothing 

technique together with the well established techniques of parameter estimation 
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compared to the situation when the parameters are estimated without using the 

double smoothing technique. 
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APPENDIX A 
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Gbsaxvad Flux Danslty Valu## at 2 cm. 

Column nusnbar 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

2 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 

3 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 0 0 0 0 0 0 0 1 

5 0 0 0 0 0 1 0 0 -1 0 0 0 0 2 

6 0 0 0 0 1 0 0 0 0 0 0 0 3 15 
7 0 0 0 1 1 0 0 1 2 1 1 5 22 60 

8 1 0 0 1 1 0 0 1 1 3 11 32 78 152 

9 0 -1 0 2 1 1 2 0 3 17 49 107 193 287 

10 -1 0 1 1 1 2 2 2 16 58 138 255 380 458 

11 0 0 0 0 2 3 1 8 48 146 307 486 611 644 

12 1 1 0 1 2 1 4 33 127 312 539 706 765 734 

13 1 0 0 1 1 1 15 86 268 537 755 833 787 673 

14 0 0 0 1 0 4 42 178 449 733 870 856 734 557 

15 1 1 1 0 0 15 90 302 622 858 891 781 613 448 

16 1 1 0 0 3 34 158 429 735 881 841 682 510 381 
17 0 0 -1 0 9 64 238 534 779 829 720 555 422 333 
18 0 -1 -1 1 21 106 312 574 735 737 610 465 362 293 
19 0 0 0 4 38 148 357 563 651 619 519 422 342 282 
20 0 0 0 11 58 174 352 510 574 545 478 406 336 300 
21 1 0 3 19 71 179 326 455 515 508 477 417 350 333 
22 0 1 6 24 72 158 274 399 495 521 500 454 409 383 
23 0 1 8 27 67 127 203 305 433 524 534 518 508 481 
24 0 0 5 24 58 100 144 205 315 448 539 583 596 590 
25 -1 0 3 18 46 76 106 145 214 324 452 549 595 620 
26 -1 0 1 11 30 55 83 117 154 206 280 356 409 448 
27 0 0 1 5 15 31 55 80 99 116 138 170 201 228 
28 0 1 3 4 5 10 21 33 42 51 62 79 98 112 
29 0 0 2 2 1 1 2 5 10 15 22 32 45 53 
30 0 0 0 0 0 0 -1 -1 0 2 4 8 13 16 
31 0 0 -1 0 0 0 0 -1 -1 -1 0 0 1 2 
32 0 0 0 0 0 -1 0 0 -1 -1 -1 0 0 1 
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15 16 17 18 

1 0 0 0 0 
2 0 0 -1 -1 
3 1 0 0 -1 
4 2 2 3 2 
5 7 12 16 13 
6 35 57 67 58 
7 115 164 181 159 
8 234 294 313 289 
9 351 387 406 402 

10 473 472 477 484 
11 601 542 516 526 
12 631 520 480 495 
13 527 417 390 412 
14 404 316 292 323 
15 333 272 255 286 
16 291 248 253 287 
17 273 243 246 289 
18 264 259 263 320 
19 264 275 301 394 
20 292 299 353 496 
21 335 347 436 631 
22 380 426 545 749 
23 471 531 659 815 
24 584 621 708 746 
25 625 637 636 532 
26 471 472 416 278 
27 249 245 191 106 
28 115 101 67 31 
29 48 34 17 7 
30 13 7 3 0 
31 0 -1 -1 -1 
32 0 0 0 -1 

185 

nuisber 

21 22 23 24 25 

-1 0 0 -1 0 
0 0 0 0 0 
0 0 -1 -1 -1 

-1 -1 -1 -1 -1 
0 0 0 0 0 
8 2 0 0 0 

41 22 12 6 3 
124 84 58 39 22 
243 185 139 97 57 
330 266 213 154 93 
370 295 242 185 117 
421 332 257 196 129 
461 392 299 213 137 
484 449 354 242 155 
528 518 406 271 169 
597 588 454 288 160 
704 667 480 262 116 
831 732 451 193 63 
907 696 351 115 26 
890 574 235 59 8 
759 403 134 26 3 
535 227 61 9 2 
300 100 21 2 1 
129 32 5 1 1 

40 6 1 1 0 
9 1 1 0 0 
3 2 2 0 0 
1 2 1 0 0 
0 1 1 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 -1 -1 0 

Column 

19 20 

0 0 
-1 -1 

-1 -1 

0 0 
7 3 

38 20 
116 72 
237 177 
366 307 
465 405 
519 458 
505 482 
445 473 
391 456 
354 447 
356 483 
402 580 
487 705 
605 837 
726 928 
855 946 
912 837 
827 602 
601 336 
328 141 
131 43 

40 11 
10 2 

2 0 
0 0 

-1 0 

0 0 

Beam width In minor axis direction = 
Beam width In major axis direction = 
Map scale: 1000 = 0.26316 Jy/beam. 

1.18 arcsec 
1.18 arcsec 
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Ob##rv#d Flux Danalty Values at 6 em. 

Column nuxnbar 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 4 3 3 3 3 3 2 2 2 1 2 2 2 3 
2 3 3 3 4 3 3 2 2 2 2 1 1 2 3 
3 3 4 4 3 2 2 2 1 2 2 1 1 2 3 
4 4 4 3 3 3 3 2 1 1 1 1 2 3 3 
5 4 4 4 4 3 3 2 2 1 1 2 2 3 5 
6 3 4 4 5 4 3 3 2 1 2 3 3 6 16 
7 4 4 3 4 4 3 2 1 1 3 4 9 26 64 
8 4 4 3 3 4 3 1 1 2 5 13 37 89 175 
9 4 4 4 4 4 3 2 3 6 19 51 116 217 339 

10 3 4 4 3 3 3 4 6 17 57 145 274 421 534 
11 4 4 4 3 3 4 4 11 48 148 319 515 671 739 
12 4 4 3 3 4 5 7 31 124 314 562 769 863 858 
13 4 4 4 5 5 6 18 84 263 543 801 931 921 825 
14 3 4 5 5 5 10 45 176 448 770 959 969 877 715 

S 15 3 4 4 4 6 21 94 303 634 915 999 922 774 593 

1 16 4 5 4 4 10 42 164 442 782 973 957 831 662 506 
5 17 4 5 4 6 17 74 253 563 848 947 869 710 557 456 ; 18 4 5 5 8 30 120 345 646 646 862 758 608 489 417 
K 19 4 5 6 14 53 178 411 658 786 766 663 550 461 392 

20 5 6 8 24 82 224 440 628 704 684 619 539 458 404 
21 5 6 12 36 104 239 421 576 646 643 604 540 474 444 
22 5 6 16 44 110 228 372 511 613 651 627 575 532 504 
23 5 8 18 45 103 191 294 417 548 641 663 642 619 597 
24 5 7 15 40 92 154 214 299 425 565 663 704 718 713 
25 5 6 12 32 72 120 161 212 306 441 579 672 722 744 
26 5 7 11 23 49 89 130 173 230 300 390 477 532 568 
27 5 6 9 16 31 56 88 125 156 177 211 253 288 322 
28 5 7 8 11 16 24 39 59 74 86 104 126 154 174 
29 6 7 7 7 8 8 11 16 22 32 45 60 80 89 
30 6 6 5 5 4 3 3 4 6 10 14 19 27 31 
31 4 4 4 3 3 3 3 3 3 4 5 6 7 7 
32 3 3 3 2 3 4 3 3 3 4 4 4 4 4 
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15 16 17 18 

1 3 4 4 3 
2 3 4 4 3 
3 3 4 4 4 
4 4 5 6 6 
5 9 15 20 21 
6 35 58 75 69 
7 124 183 209 186 
8 281 360 381 350 
9 438 492 507 495 

10 576 587 598 602 
11 717 672 654 654 
12 777 674 632 644 
13 690 565 527 555 
14 548 443 420 457 
15 452 377 360 400 
16 408 357 352 392 
17 383 346 353 391 
18 364 351 368 428 
19 368 381 401 498 
20. 402 413 460 600 
21 443 461 551 722 
22 502 545 656 830 
23 599 649 761 899 
24 707 740 817 833 
25 746 760 746 615 
26 593 594 517 348 
27 347 337 263 149 
28 178 155 105 51 
29 83 62 36 17 
30 28 19 11 7 
31 7 5 5 5 
32 4 5 5 6 

187 

nuniber 

21 22 23 24 25 26 

3 2 3 2 2 2 
3 3 3 . 2 2 2 
3 4 3 2 2 3 
4 4 3 3 3 3 
6 5 5 4 3 4 

15 9 7 5 5 5 
50 29 19 13 10 7 

146 100 68 47 31 19 
296 231 173 124 77 44 
423 347 281 207 129 73 
481 394 330 252 163 96 
523 431 352 270 181 110 
578 496 391 291 194 120 
615 563 450 325 215 137 
657 640 518 360 232 141 
721 709 566 376 223 116 
809 774 583 343 167 68 
910 806 524 248 91 28 
960 742 388 137 36 • 9 
919 602 255 67 12 3 
788 425 147 31 6 4 
571 248 69 12 4 4 
327 114 26 6 4 3 
146 39 9 5 4 3 

50 12 5 5 4 4 
15 7 6 4 4 4 

8 7 6 5 4 4 
7 6 6 6 4 3 
6 6 6 5 4 4 
6 7 6 4 4 4 
7 7 5 4 4 4 
6 5 5 4 4 3 

Column 

19 20 

3 3 
3 3 
4 4 
5 4 

14 9 
46 27 

137 88 
285 209 
447 369 
577 506 
640 577 
647 607 
590 606 
523 590 
479 577 
478 610 
508 687 
590 796 
700 906 
810 979 
913 989 
963 881 
886 642 
659 371 
378 164 
166 55 

58 17 
18 8 

9 7 
7 6 
6 6 

6 6 

Beam Width in minor axis direction 
Beam Width in major axis direction 
Map scale: 1000-0.23244 Jy/beam 

= 1.34 
= 1.15 

arcsec 
arcsec 
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Obsaxvad Vlux Danalty Valuaa at 20 cm. 

Column nunbax 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 -6 -8 -7 -5 -4 -3 -3 -2 -2 -3 -5 -6 -8 -5 

2 -7 -7 -5 -5 -3 0 0 -1 -1 -3 -4 -5 -5 -3 
3 -5 -3 0 -2 -1 1 1 0 -1 -3 -2 -1 -1 -3 

4 -3 1 3 0 -4 -5 -4 -2 -3 -6 -3 0 0 -1 

5 -1 1 0 -3 -8 -12 -9 -5 -4 -4 -2 0 3 9 

6 -1 -2 -4 -5 -6 -9 -9 -7 -4 -1 0 0 11 40 
7 -1 -2 -3 -3 -4 -4 -6 -6 -2 1 4 16 57 143 
8 0 -1 0 -2 -4 -2 -3 -2 1 10. 35 88 186 343 

9 0 -1 -1 -4 -5 -3 -3 0 13 ' 54 136 254 408 580 

10 1 -1 -1 -3 -4 -2 1 9 45 145 304 471 625 746 
11 -1 -2 -2 -1 0 1 4 22 99 273 488 655 754 814 
12 -4 -6 -4 1 4 2 5 42 174 411 635 759 820 862 
13 -6 -5 -4 0 3 1 15 96 291 553 739 809 849 891 
14 -4 -2 -3 -2 0 3 43 187 445 686 811 850 871 894 
15 -3 -2 -2 -2 0 15 99 306 580 761 828 857 868 879 
16 -3 -2 1 1 3 43 188 446 688 805 848 871 861 850 
17 -3 -3 -1 1 15 90 292 564 750 828 853 856 852 846 
18 -2 -3 -3 4 42 168 415 665 789 839 853 850 847 826 
19 -1 -1 -2 16 91 274 539 737 814 843 848 846 842 824 
20 0 -1 3 43 166 397 638 766 822 846 850 843 842 830 
21 -2 -1 15 84 246 487 686 786 829 838 850 847 850 846 
22 -4 1 33 126 305 523 681 768 803 819 846 848 843 851 
23 -3 5 41 142 320 520 658 721 763 806 826 842 853 858 
24 -2 6 34 122 289 474 590 641 704 775 802 828 837 848 
25 -3 6 26 94 244 414 520 586 650 717 760 790 805 816 
26 -2 6 21 70 185 323 439 539 598 643 670 696 733 746 
27 0 5 19 55 124 205 297 396 451 497 535 570 620 647 
28 3 7 19 41 68 96 138 192 230 279 342 403 477 521 
29 7 10 17 23 26 30 40 55 70 101 152 209 275 316 
30 4 7 10 9 9 10 11 11 10 18 41 69 102 122 
31 -1 2 3 2 2 2 2 2 -2 -2 7 15 23 28 
32 -4 -1 -1 0 0 -2 -3 -2 -1 1 4 4 4 5 
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Column number 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

1 -5 -7 -6 -4 -6 -5 -3 -3 -2 -2 -2 -4 -3 2 
2 -4 -6 -5 -3 -5 -4 -4 -4 0 -2 -3 -2 2 
3 -5 -5 -4 -5 -6 -5 -6 -5 1 2 2 0 0 
4 3 10 9 3 -2 -4 -4 -3 1 3 2 -1 -2 
5 27 53 66 58 34 14 6 3 1 2 1 -2 -1 1 
6 97 172 220 208 145 83 43 19 7 4 1 -2 1 3 
7 271 400 473 453 358 247 150 83 50 36 26 19 15 13 
8 521 648 714 703 613 486 355 259 195 155 118 79 54 43 
9 720 805 856 846 786 707 608 528 443 362 270 177 121 93 

10 822 875 908 895 863 833 775 737 672 565 419 283 204 144 
11 865 901 912 923 911 886 843 810 766 666 509 366 276 184 
12 895 909 918 945 943 935 906 848 794 702 549 413 320 205 
13 902 905 914 937 957 964 937 887 835 736 583 443 323 192 
14 884 875 877 902 950 980 982 940 867 759 617 464 296 146 
15 867 852 848 879 923 957 999 978 893 783 631 446 247 95 
16 840 835 842 863 904 947 981 966 875 741 555 339 155 47 
17 835 825 837 846 888 944 946 917 804 613 392 189 63 14 
18 818 820 837 856 878 903 874 796 627 398 202 73 15 2 
19 830 834 835 866 881 877 810 647 408 192 70 18 1 1 
20 824 834 840 866 868 828 726 503 242 78 18 5 2 1 
21 838 852 868 873 858 787 632 372 136 29 4 3 2 0 
22 857 860 868 855 816 701 491 240 71 14 1 0 1 0 
23 859 863 870 835 736 544 307 119 30 8 2 0 1 0 
24 855 848 834 755 587 354 151 41 7 4 3 3 3 0 
25 828 816 769 626 403 189 56 7 0 3 5 5 2 -1 
26 762 741 646 451 231 84 19 2 0 2 3 2 -1 -2 
27 658 610 465 264 104 29 6 2 1 0 0 -2 -2 0 
28 500 416 271 123 37 8 4 3 1 -1 -2 -2 -1 -1 
29 288 209 114 41 9 3 3 1 -2 -5 -4 -2 -1 -3 
30 107 69 31 8 1 0 0 1 -3 -6 -4 -1 -2 -4 
31 23 12 3 -1 -1 -1 -1 0 -3 -7 -4 -3 -4 -5 
32 3 0 -3 -3 -1 0 0 -2 -5 -6 -4 -4 -4 -3 

Beam Width in minor axis direction = 
Beam Width in major axis direction = 
Map scale: 1000 = 0.039684 Jy/beam. 

1.24 arcsec 
1.21 arcsec 
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13. APPENDIX B 

Following is a listing of some of the most important programs used in this dis

sertation. 
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C * 
c NAME; BLUE.FOR * 
C * 
C PURPOSE: PARAMETER ESTIMATION FROM SIMULATED DATA OR * 
C OBSERVED DATA FOR NGC 7027 USING LINEAR * 
C ESTIMATION THEORY. * 
C * 
C REFERENCES : * 
C * 
C * 
C * 
C AUTHOR: W C VENTER * 
C * 
C DATE WRITTEN: 2/13/88 * 
C * 
C LAST REVISION: 10/17/88 * 
C * 

c 
PROGRAM BLUE 

C 

C * 
C SYMBOL DECLARATIONS * 
C * 
Q********************** 
C 

INTEGER*4 I, J, II, JJ, KK, IN 
REAL*8 DAT02(32,28), DAT06(32,28), DAT20(32,28) 
REAL*8 DD02, DD06, DD20, DUM, DUMl, DUM2, DUM3, DUM4 
REAL*8 PI, BOLTZ, THETAX, THETAY, A02, A06, A20 
REAL*8 K102, K106, K120, K202, K206, K220 
REAL*8 TONOM, TINOM, T6N0M 
REAL*8 S02, S02NOM, S06, S06NOM, S20, S20NOM 
REAL*8 L102, L202, L302, L106, L206, L306 
REAL*8 L120, L220, L320, L302A, L306A, L320A 
REAL*8 H(3,3), HT(3,3), TEMPI(3,3), TEMP2(3,3), K(3,3) 
REAL*8 R(3,3), RINV(3,3) 
REAL*8 T0EST(32,28), TIEST(32,28), T6EST(32,28), 

TEMP(32,28) 
REAL*8 CF02, CF06, CF20, B 
REAL*8 A02T6, A06T6, A20T6, E02, E06, E20 
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C 
C************* 
c * 
c OPEN FILES * 
C * 
0************* 
C 
C############################################################# 
c # 
c SIMULATED VALUES FOR FLUX DENSITY AT 2 CM IS STORED # 
C SEQUENTIALLY IN FILE CM02SI.SEQ # 
C SIMULATED VALUES FOR FLUX DENSITY AT 6 CM IS STORED # 
C SEQUENTIALLY IN FILE CM06SI.SEQ # 
C SIMULATED VALUES FOR FLUX DENSITY AT 20 CM IS STORED # 
C SEQUENTIALLY IN FILE CM20SI.SEQ # 
C # 
C OBSERVED VALUES FOR FLUX DENSITY AT 2 CM IS STORED # 
C SEQUENTIALLY IN FILE CM02SQ.SEQ # 
C OBSERVED VALUES FOR FLUX DENSITY AT 6 CM IS STORED # 
C SEQUENTIALLY IN FILE CM06SQ.SEQ # 
C OBSERVED VALUES FOR FLUX DENSITY AT 20 CM IS STORED # 
C SEQUENTIALLY IN FILE CM20SQ.SEQ # 
C # 
C ESTIMATED VALUES FOR PARAMETER TO IS STORED IN FILE # 
C TOEST.MAP IN MAP FORMAT # 
C ESTIMATED VALUES FOR PARAMETER T1 IS STORED IN FILE # 
C TIEST.MAP IN MAP FORMAT # 
C ESTIMATED VALUES FOR PARAMETER T6 IS STORED IN FILE # 
C T6EST.MAP IN MAP FORMAT # 
C # 
C ESTIMATED VALUES FOR PARAMETER TO IS STORED IN FILE # 
C TOEST.AGR IN AGRAPH FORMAT # 
C ESTIMATED VALUES FOR PARAMETER T1 IS STORED IN FILE # 
C TIEST.AGR IN AGRAPH FORMAT # 
C ESTIMATED VALUES FOR PARAMETER T6 IS STORED IN FILE # 
C T6EST.AGR IN AGRAPH FORMAT # 
C # 
C############################################################# 
c 

WRITE(6,110) 
110 FORMAT(IX,'USE OBSERVED DATA? - 1 FOR YES; 0 FOR NO') 

READ(6,*)IN 
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OPEN(13, PILE-'NOISE', ACCESS-'SEQUENTIAL', STATUS-'OLD') 
OPEN(14, FILE-'DATOUT', STATUS-'UNKNOWN') 
OPEN(15, FILE-'TOEST.MAP', STATUS-'UNKNOWN') 
OPEN(16, FILE-'TIEST.MAP', STATUS-'UNKNOWN') 
OPEN(17, FILE-'T6EST.MAP', STATUS-'UNKNOWN') 
OPEN(19, FILE-'TOEST.AGR', STATUS-'UNKNOWN') 
OPEN(20, FILE-'TIEST.AGR', STATUS-'UNKNOWN') 
OPEN(21, FILE-'T6EST.AGR', STATUS-'UNKNOWN') 
IF(IN.EQ.1)G0 TO 120 
OPEN(10, FILE-'CM02SI.SEQ', ACCESS-'SEQUENTIAL', 

STATUS-'OLD') 
OPEN(11, FILE-'CM06SI.SEQ', ACCESS-'SEQUENTIAL', 

STATUS-'OLD') 
OPEN(12, FILE-'CM20SI.SEQ', ACCESS-'SEQUENTIAL', 

STATUS-'OLD' ) 
GO TO 130 

120 OPEN(10, FILE-'CM02SQ', ACCESS-'SEQUENTIAL', STATUS-'OLD') 
OPEN(11, FILE-'CM06SQ', ACCESS-'SEQUENTIAL', STATUS-'OLD') 
OPEN(12, FILE-'CM20SQ', ACCESS-'SEQUENTIAL', STATUS-'OLD') 

C 

c • 

C PROGRAM * 
C 
C* ********* 
c 
c############### 
c # 
C READ DATA IN # 
C # 
C############### 
c 

130 READ(10,*) DAT02 
READ (11,*) DAT06 
READ(12,*) DAT20 
READ(13,*) R 

C 
C################################# 
c 
C CONVERTS INPUT 
C 

# 
DATA TO JENSKYS # 

# 
C################################# 
c 
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IF(IN.NE.1)GO TO 140 
CF02-0.26316*lE-26/1000.0 
CF06-0.23244*lE-26/1000.0 
CF20-0.039684*lE-26/1000.0 
GO TO 150 

C 
140 CF02-1E-26 

CF06-1E-26 
CF20-1E-26 

C 
150 DO 710 1-1,32 

DO 720 J-1,28 
DAT02(I,J)-DAT02(I,J)*CF02 
DAT06(I,J)-DAT06(I,J)*CF06 

720 DAT20(I,J)-DAT20(I,J)*CF20 
710 CONTINUE 

C 
C############ 
c # 
C CONSTANTS # 
C # 
c############ 
c 

PI-3.14159265358979 
BOLTZ-1.381E-23 
THETAX-6.01169E-6 
THETAY-5.86625E-6 
A02-0.09528 
AO 6-1.0 
A20-12.544 

C 
C WRITE(6,700) 
C 700 FORMAT(IX,'VALUE OF B=?') 
C READ(6,*)B 
C 

K102=(PI*BOLTZ*THETAX*THETAY)/(2.0*LOG(2.0)*(0.02)**2) 
K106-(PI*BOLTZ*THETAX*THETAY)/(2.0*106(2.0)*(0.06)**2) 
K120=(PI*BOLTZ*THETAX*THETAY)/(2.0*106(2.0)*(0.20)**2) 

C K202-K102/(1.0-(B/A02)) 
C K206-K106/(1.0-(B/A06)) 
C K220-K120/(1.0-(B/A20)) 
C 

WRITE(14,101) 
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101 FORMAT{IX,' K102 K106 K120 K202',6X, 
Q'K206 K220') 

WRITE(14,100)K102, K106, K120 
100 FORMAT(IX,3(ElO.3E3),/) 

C 
C################################################### 
C # 
c CALCULATE NOMINAL VALUE FOR EACH DATA POINT BY # 
C SOLVING THREE SIMULTANEOUS EQUATIONS DIRECTLY. # 
C # 
C################################################### 
c 

DO 210 1-6,26 
DO 220 J-6,25 

T6EST(I,J)-0.2 
820 ET6-EXP(-1.0*T6EST(I,J)) 

A02T6-A02*T6EST(I, J) 
A20T6-A20*T6EST(I, J) 
E02-EXP(-1.0*A02T6) 
E20-EXP(-1.0*A20T6) 

C 
DUM-(1.0/A20T6)-E20 
DUMl-(1.0/A02T6)-((1.0/A02T6)*E02)-E02 
DUM2-(DAT02(I,J)/K102)*DUM/DUM1 
DUM2-(DAT20(I,J)/K120)-DUM2 
DUM3-1.0-(1.0/A02T6)+(1.0/A02T6)*E02 
DUM4-1.0-(1.0/A20T6)-((DUM3/DUM1)*DUM) 
TIEST(I,J)-DUM2/DUM4 

TOEST(I,J)-((DAT02(I,J)/K102)-(TIEST(I,J)*DUM3))/DUMl 
C 

DUM-TOEST(I,J)*(1.0-ET6) 
DUMl-(TOEST(I,J)-TIEST(I,J))/T6EST(I,J) 
DUM-DUM-DUMl*(T6EST(I,J)-1.0+ET6) 
DUM-DUM-(DAT06(I,J)/K106) 
IF(DUM.LT.-10.0)GO TO 830 
IF(DUM.GT.10.0)GO TO 830 
GO TO 810 

830 T6EST(I,J)=T6EST(I,J)+0.001 
IF(T6EST(I,J).GT.5.0)GO TO 810 
GO TO 820 

810 WRITE(6,850)TOEST(I,J),TIEST(I,J),T6EST(I,J),I,J 
850 FORMAT(IX,3F15.3,214) 

C 
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C################################### 
C # 
c TAKE OUT VALUES WITH T6EST>2.99 # 
C # 
C################################### 
C 

IF(T6EST(I,J).LT.4.99)GO TO 870 
T6EST(I,J)-0.0 
TOESTd, J)-0.0 
TlESTd, J) -0.0 
TEMP(I,J)-0.0 
GO TO 220 

C 
C##################################### 
C # 
c PARAMETER ESTIMATION # 
C # 
C##################################### 
C 

870 DO 560 KK-1,6 
C 

TONOM-TOEST(I, J) 
T1N0M-T1EST(I, J) 
T6NOM-T6EST(I, J) 

C 
A02T6-A02*T6NOM 
A06T6-A06*T6NOM 
A20T6-A20*T6NOM 
E02-EXP(-A02T6) 
E06-EXP(-A06T6) 
E20-EXP(-A20T6) 

C 
550 S02-K102*TONOM*((1.0/A02T6)*(1.0-E02)-E02) 

S02NOM=K102*TlNOM*(1.0-((1.0/A02T6)*{1.0-E02))) 
S02NOM-S02NOM+S02 
S06-K106*TONOM*((1.0/A06T6)*(1.0-E06)-E06) 
S06NOM=K106*T1NOM*(1.0-((1.0/A06T6)*(1.0-E06))) 
S06N0M-S06N0M+S06 
S20-K120*TONOM*((1.0/A20T6)*(1.0-E20)-E20) 
S20NOM-K120*T1NOM*(1.0-((1.0/A20T6)*(1.0-E20))) 
S20NOM=S20NOM+S20 

C 
S02-((S02NOM-DAT02(I,J))/DAT02(I,J))*100.0 
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S06-((S06NOM-DAT06(I,J))/DAT06(I,J))*100.0 
S20-((S20NOM-DAT20(I,J))/DAT20(I,J))*100.0 

C 
S02NOM-S02NOM/1E-26 
S06NOM-S06NOM/1E-26 
S20NOM-S20NOM/1E-26 

C 
C WRITE(14,110)TONOM, TINOM, T6N0M, I, J 
C 110 F0RMAT(1X,3(E14.7E3),215) 

WRITE(6,112)302, S06, S20 
112 FORMAT(IX,3F9.2) 

C 
C##################### 
c # 
C CORRECT DATA UNITS # 
C # 
C##################### 
C 

DD02-DAT02(I,J)/lE-26 
DD06-DAT06(I,J)/lE-26 
DD20-DAT20(I,J)/lE-26 

C 
DD02-DD02-S02NOM 
DD06-DD06-S06NOM 
DD20-DD20-S20NOM 

C 
C########### 
c # 
c H MATRIX # 
C # 
C########### 
C 

L102=K102*((1.0/A02T6)*(1.0-E02)-E02) 
L202-K102*(1.0-((1.0/A02T6)*(1.0-E02))) 
L302=(1.0/(A02T6*T6NOM))*(E02-1.0) 
L302-(L302+(E02*((1.0/T6NOM)+A02)))*TONOM 
L302A-(1.0/(A02T6*T6NOM))*(1.0-E02) 
L302A-(L302A-(1.0/T6NOM)*E02)*T1N0M 
L302=(L302+L302A)*K102 
L106-K106*((1.0/A06T6)*(1.0-E06)-E06) 
L206-K106*(1.0-((1.0/A06T6)*(1.0-E06))) 
L306-(1.0/(A06T6*T6NOM))*(E06-1.0) 
L306-(L306+(E06*((1.0/T6NOM)+A06)))*TONOM 
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L306A-(1.0/(A06T6*T6NOM))*(1.0-E06) 
L3 0 6A-(L30 6A-(1.0/T6N0M)*E0 6)*T1N0M 
L306-(L306+L306A)*K106 
L120-K120*((1.0/A20T6)*(1.0-E20)-E20) 
L220-K120*(1.0-((1.0/A20T6)*(1.0-E20))) 
L320-(1.0/(A20T6*T6NOM))*(E20-1.0) 
L320-(L320+(E20*((1.0/T6NOM)+A20)))*TONOM 
132OA-(1.0/(A20T6*T6NOM))*(1.0-E20) 
L320A-(L320A-(1.0/T6NOM)*E20)*T1NOM 
L320-(L320+L320A)*K120 

C 
- L120/1E-26 

H(l,2) - L220/1E-26 
H(1,3) - L320/1E-26 
H(2,l) - L106/1E-26 
H(2,2) - L206/1E-26 
H(2,3) - L306/1E-26 
H(3,l) - L102/1E-26 
H(3,2) - L202/1E-26 
H (3,3) - L302/1E-26 

C 
C WRITE(14,151) 
C 151 FORMAT(IX,'H-MATRIX') 
C DO 160 NI-1,3 
C WRITE(14,170) (H(NI,NJ),NJ=1,3) 
C 170 FORMAT(IX,3E16.7E3) 
C 160 CONTINUE 
C 

CALL TRANSP(H, 3, 3, HT) 
CALL MATINV(R, RINV, 3) 
CALL MUL33(TEMPI, RINV, H) 
CALL MUL33(TEMP2, HT, TEMPI) 
CALL MATINV(TEMP2, TEMPI, 3) 
CALL MUL33(TEMP2, HT, RINV) 
CALL MUL33(K, TEMPI, TEMP2) 

C 
C WRITE(14,180) 
C 180 FORMAT(IX,'K-MATRIX') 
C DO 190 NI=1,3 
C WRITE(14,200) (K(NI,NJ),NJ=1,3) 
C 200 FORMAT(IX,3E16.7E3) 
C 190 CONTINUE 
C 
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TOESTd, J)-K(1,1) *DD20+K(1,2) *DD06+K(1,3) *DD02 
TIEST(I,J)-K(2,1)*DD20+K(2,2)*DD06+K(2,3)*DD02 
T6EST(I,J)-K(3,1)*DD20+K(3,2)*DD06+K(3,3)*DD02 

TOESTd, J)-TOEST(I, J) +TONOM 
TIEST(I,J)-TIEST(I,J)+T1N0M 
T6EST(I,J)«T 6EST(I,J)+T 6N0M 

C 
GO TO 570 
IF(T6EST(I,J).LT.O.O)GO TO 530 
IF(T6EST(I,J).GT.5.0)GO TO 530 
GO TO 570 

530 IF(T6NOM.GT.0.25)GO TO 540 
T6NOM-0.6 
GO TO 570 

540 T6NOM-0.2 
GO TO 550 

570 WRITE(6,1110) TOESTd, J), TlESTd, J), T6EST(I,J), I, J 
1110 FORMAT(1X,3(E10.3E3> ,215) 

560 CONTINUE 
C 

IF(T6EST(I,J).GE.0.2.AND.T6EST(I, J).LT.3.99)GO TO 220 
T6EST(I,J)-0.0 
TOESTd, J) -0.0 
TlESTd, J)-0.0 
TEMP (I, J)-0.0 

220 CONTINUE 
210 CONTINUE 

C 
C################################### 
c # 
C WRITE OUT FINAL ESTIMATED VALUES # 
C # 
C################################### 
C 

WRITE(15, 230) 
230 FORMAT(IX,'TOEST',/) 

WRITE(16,240) 
240 FORMAT(IX,'TIEST',/) 

WRITE(17,250) 
250 FORMAT(IX,'T6EST',/) 

DO 260 1-1,32 
WRITE(15,270) (TOEST(I,J),J=l,7) 
WRITE(16,270) (TIEST(I,J),J=l,7) 
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WRITE(17,270) (T6EST(I,J),J-1,7) 
FORMAT(1X,7E10.3E2) 
CONTINUE 

270 
260 

WRITE(15,280) 
WRITE(16,280) 
WRITE(17,280) 

280 FORMAT(IX) 
DO 290 1-1,32 

WRITE(15,270) 
WRITE(16,270) 

290 WRITE(17,270) 
WRITE(15,280) 
WRITE(16,280) 
WRITE(17,280) 
DO 300 1-1,32 

WRITE(15,270) 
WRITE(16,270) 

300 WRITE(17,270) 
WRITE(15,280) 
WRITE(16,280) 
WRITE(17,280) 
DO 310 1-1,32 

WRITE(15,270) 
WRITE(16,270) 

310 WRITE(17,270) 

(TOESTd, J) , J-
(TlESTd, J) , J-
(T6EST(I, J) , J-

•8,14) 
•8,14) 
•8,14) 

(TOESTd, J) , J' 
(TlESTd, J),J" 
(T6EST(I, J),J" 

•15,21) 
•15,21) 
•15,21) 

(TOESTd, J) , J. 
(TlESTd, J) , J" 
(T6EST(I, J), J-

2 2 , 2 8 )  
2 2 , 2 8 )  
2 2 , 2 8 )  

C################################### 
C # 
C WRITE OUT FINAL ESTIMATED VALUES # 
C IN AGRAF FORMAT. # 
C # 
C################################### 
C 

WRITE(19,2800)28,32,0,0 
WRITE(20,2800)28,32,0,0 
WRITE(21,2800)28, 32, 0,0 

2800 FORMAT(IX,414) 
DO 800 1=32,1,-1 

WRITE(19, 270) 
WRITE(19, 270) 
WRITE(19, 270) 
WRITE(19, 270) 
WRITE(20, 270) 

(TOESTd, J) , J=l,7) 
(TOESTd, J), J=8,14) 
(TOESTd, J) , J=15,21) 
(TOESTd, J), J=22,28) 
(TlESTd, J) , J=l,7) 
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WRITE(20,270) (TIEST(I,J),J-8,14) 
WRITE(20,270) (TIEST(I,J),J-15, 21) 
WRITE(20,270) (TIEST(I,J),J-22, 28) 
WRITE(21,270) (T6EST(I,J),J-1,7) 
WRITE(21,270) (T6EST(I,J),J-8,14) 
WRITE(21,270) (T6EST(I,J),J-15,21) 

800 WRITE(21,270) (T6EST(I,J),J-22,28) 
C 

STOP 
END 

C 
g * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C * 
C NAME; SUBROUTINE - MUL33.F0R * 
C * 
C PURPOSE: MULTIPLIES TWO 3X3 MATRIXES * 
C * 
C * 
C * 
C REFERENCES : * 
C * 
C * 
C * 
C WRITER: W C VENTER * 
C * 
C DATE WRITTEN: 2/25/88 * 
C * 
C LAST REVISION: * 
C * 

C 
SUBROUTINE MUL33 (MUL, A, B) 

C 

C * 
C SYMBOL DECLARATIONS * 
C * 

C 
REAL*8 MUL(3,3), A(3,3), B(3,3) 

C 

C * 
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C * 
Q********************** 
C 

INTEGER*4 NMAX 
REAL*8 TINY, D 
PARAMETER (NMAX-100, TINY-1.OE-20) 
REAL*8 A(NP,NP), AAMAX, W(NMAX), SUM, DUM 
INTEGER*4 INDX(N) 
INTEGER*4 I, J, K, IMAX 

C 
D-1. 
DO 12 I-1,N 

AAMAX-0. 
DO 11 J-1,N 

IF (ABS(A(I,J)).GT.AAMAX) AAMAX-ABS(A(I, J) ) 
11 CONTINUE 

IF (AAMAX.EQ.0.) PAUSE 'Singular matrix.' 
W(I)-1./AAMAX 

12 CONTINUE 
DO 19 J-1,N 

IF (J.GT.l) THEN 
DO 14 I-1,J-1 

SUM-A(I, J) 
IF (I.GT.l)THEN 

DO 13 K=l,I-l 
SUM-SUM-A{I,K)*A(K,J) 

13 CONTINUE 
A(I,J)=SUM 

ENDIF 
14 CONTINUE 

ENDIF 
AAMAX=0. 
DO 16 I=J,N 

SUM=A(I,J) 
IF (J.GT.l)THEN 

DO 15 K=1,J-1 
SUM-SUM-A ( I, K) *A (K, J) 

15 CONTINUE 
A(I,J)=SUM 

ENDIF 
DUM=W(I)*ABS(SUM) 
IF (DUM.GE.AAMAX) THEN 

IMAX=I 



www.manaraa.com

* 0 
* 88/^2/e ÎNOISIAHH ISVl 0 
* 0 

* 88/zz/E sNajiiiHM aivo 0 
* 0 

* rnaiilHM 0 
* -

* 0 
* 9E sa 0 
* saiaioan ivoiHawnn ssaoNanaaan o 
* 0 
* 0 
* 'XIHIVW 0 
* V ao asnaANi ani SNiivmoivo NI aasn aNiinonans : asoayna o 
* 0 
* Hoa'asiiam: aNiinonans -'awvN o 
* 0 
************************************************************0 

0 
ONa 

NHniaH 
XNIl-{ll'N)VCO*Da* {N'N)V)ai 

anNiiNOD 61 
aiGNa 

ariNIINOO 8T 
wna*(r'i)v-(r'i)v 

N'T+r-i 81 oa 
(r'D v/'i-wna 

ANii.-(r'r)vCo*Oa-(r'r)v)ai 
NaHx(N'aNT)ai 

xvwi-(r)xaNi 
aiQNa 

(r)AA-(XVWI)AA 
a—a 

anNiiNOO LÏ 
wQa-(x'r)v 

(X 'r)v-(H'xvwi)v 
(H'XYwDv-wna 

N'T-H Z.T 00 
NaHKxvwi'aNT) ai 

anmxNOo 9X 
aiQNa 

Wna-XVMW 

soz 
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* 0 
* HOj'ANiivw HNimoHans îawvN o 
* 0 
************************************************************0 

0 
aN3 

mniay 
aQNIIiNOO M 

(i'i)v/wns=(i)e 
jiQNa 

anmiNOo ex 
(r)a* (r'i)v-wns-wns 

N'l+I»r ET 00 
NaHllN-lTI) 

(i)a-wns 
T-'T'N-I M oa 

anNiiNOO ZI 
wns-(i)a 

iiatia 
i-ii 

NaHi Co'aN-wns) gi asia 
anNiiNOO II 

(r) a* (r'D v-wns-wns 
i-i'ii-r II oa 
NaHKo'aN'ii) 

(i)a-(Ti)a 
(iD a-wns 

(DxaNi-n 
N'i-i 21 oa 

O-II 
1 1  ' I I  "I ^*Ha9ai.Ni 

(N)xaHi {'*Ha5aj;Ni 
(N)s 'wns '(aN'aN)v 8*ivay 

0 
**********************0 

* 0 

* SNOiivHvioaa loawAS o 
* 0 

**********************0 

0 
(a'xaNi'dN'N'V)asHani aNiinonans 

0 
************************************************************3 

903 
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C PURPOSE; CALCULATES THE INVERSE OF A MATRIX. * 
C * 
C * 
C * 
C REFERENCES: * 
C * 
C * 
C * 
C WRITER; W C VENTER * 
C * 
C DATE WRITTEN; 3/22/88 * 
C * 
C LAST REVISION; 3/24/88 * 
C * 

C 
SUBROUTINE MATINV(A, Y, N) 

C 
C********************** 
C * 
c SYMBOL DECLARATIONS * 
C * 
C********************** 
C 
C 

REAL*8 A(3,3), Y(3,3), D 
INTEGER*4 INDX(3) 
INTEGER*4 I, J 

C 
C####### 
C # 
c DATA # 
C # 
C####### 
c 

NP-3 
C 
C########## 
C # 
c PROGRAM # 
C # 
c########## 
C 
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DO 1000 I-1,N 
DO 1001 J-1,N 

Y(I,J)-0. 
1001 CONTINUE 

Y(I,I)-1. 
1000 CONTINUE 

CALL LUDCMP(A,N,NP,INDX,D) 
DO 1002 J-1,N 

CALL LUBKSB(A,N,NP,INDX,Y(1,J)> 
1002 CONTINUE 

RETURN 
END 
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C************************************************************ 
c * 
c NAME; RNDPLOC.FOR * 
C * 
C PURPOSE; FIND THE LOCATION AND SIZE OF THE RAINDROPS * 
C * 
C * 
C * 
C * 
C * 
C PROGRAMMER : W C VENTER * 
C * 
C DATE WRITTEN; 12/17/88 * 
C * 
C LAST REVISION: 1/2/89 * 
C * 
Q************************************************************ 
c 

PROGRAM RNDPLOC 
C 
g************************ 
C * 
C SYMBOL DECLARATIONS * 
C * 
g************************ 

C 
INTEGER*2 IHRl, IMINl, ISECl, IHUNl 
INTEGER* 2 IHR2, IMIN2, ISEC2, IHUN2 
INTEGER*2 IHRD, IMIND, ISECD, IHUND 

C 
INTEGER*2 I, J, K, L, IT, JT, KT, CELLX, RAD 
INTEGER*2 IM, IP, JM, JP, M, ISIZE, JSIZE 
INTEGER*2 CELL(256, 256) 
INTEGER*2 NUMl, NUM2, NUM3, NUM4, XOFF, YOFF, Kl, LI 
REAL*4 C3, DUM 

C 
Q**************  

c * 
c PROGRAM * 
C * 
0************** 

C 
c############## 
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C # 
C START TIMER # 
C # 
C############## 
C 

CALL GETTIMdHRl, IMINl, ISECl, IHUNl) 
WRITE(6,900)IHR1, IMINl, ISECl, IHUNl 

900 FORMAT(IX,'STARTING TIME : : ',12,':'12,':',12,'.' 
C 
C################### 
C # 
C OPEN INPUT FILE # 
C # 
C################### 
C 
C###################################################### 
c # 
c CELL INFORMATION MUST BE STORED IN FILE 'CELL' # 
C IN AGRAF FORMAT # 
C RAINDROP LOCATIONS WILL BE STORED IN FILE 'DROP' # 
C # 
C###################################################### 
c 

OPEN(9, FILE='DROP', STATUS»'UNKNOWN') 
OPEN(10, FILE='CELL', STATUS»'OLD') 

C 
C################### 
c # 
C READ INPUT DATA # 
C # 
C################### 
C 

WRITE(6,80) 
80 FORMAT(IX,'MINIMUM RAINDROP RADIUS IN PIXELS?') 

READ(6,*)RAD 
C 

READ(10,*)ISIZE, JSIZE 
READ(10,*)((CELL(I,J),J=l,JSIZE),1=1,ISIZE) 

C################################################# 
c 

c 
C FIND POSITION AND SIZE OF FIRST CELL WITH 
C HIGHEST COUNT 

# 
# 
# 
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C # 
C################################################# 
C 

WRITE(9,100)ISIZE, JSIZE 
100 FORMAT(IX, 215) 

C 
DO 200 M-1,500 

C 
CELLX-0 
IT-0 
JT-0 
KT-0 
DO 120 I-1,ISIZE 

DO 120 J-1,JSIZE 
IF(CELL{I,J).LE.CELLX)GO TO 120 
CELLX-CELLd, J) 
IT-I 
JT-J 
KT-CELL(I,J) 

120 CONTINUE 
IF(CELLX.LT.RAD)GO TO 210 

C 
C############################# 
C # 
C FIND RAINDROP POSITION # 
C # 
C############################# 
C 
c######################## 
C # 
c FIND ROW OFFSET # 
c # 
C######################## 
c 

NUM2"0 
DO 300 K=1,KT 

NUM1=0 
DO 310 L=-KT,KT 

K1=IT+K 
L1=JT+L 
IF(K1.LT.1)G0 TO 310 
IF(K1.GT.ISIZE)G0 TO 310 
IF(L1.LT.1)G0 TO 310 
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IF(L1.GT.JSIZE)G0 TO 310 
IF(CELL(K1,L1).LT.KT)GO TO 310 
NUML-NUML+1 

310 CONTINUE 
IF(NUM1.EQ.O)GO TO 315 
NUM2-NUM2+1 

300 CONTINUE 
315 DUM-FLOAT(NUM2)/2.0 

XOFF-INT(DUM) 
C 
C######################## 
C # 
C FIND COLUMN OFFSET # 
C # 
C#"####################### 
C 

NUM2-0 
NUM3-0 
NUM4-0 
DO 320 K—KT,KT 

NUML-0 
DO 330 L-0,KT 

KL-IT+L 
LL-JT+K 
IF(K1.LT.1)G0 TO 330 
IF(K1.GT.ISIZE)G0 TO 330 
IF(L1.LT.1)G0 TO 330 
IF(L1.GT.JSIZE)G0 TO 330 
IF(CELL(K1,L1).LT.KT)GO TO 330 
NUML-NUML+1 

330 CONTINUE 
IF(NUM1.EQ.O)GO TO 320 
IF(NUM4.NE.O)GO TO 340 
NUM4=>NUM4+1 
NUM2=K 

340 NUM3-K 
320 CONTINUE 

YOFF-NUM3-NUM2 
DUM-FLOAT(YOFF)/2.0 
YOFF-INT(DUM) 

C 
C NUM2 IS ALWAYS LESS THAN OR EQUAL TO 0 
C 
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IT-IT+XOFF 
JT-JT+Ï0FP+NUM2 

C 
C############################# 
C # 
c STORE RAINDROP POSITION # 
C # 
C############################# 
C 

WRITE (6,150) IT, JT, KT 
150 FORMAT(IX,316) 

WRITE(9,150)IT, JT, KT 
C 
C######################## 
C # 
c REMOVE RAINDROPS # 
C # 
C######################## 
C 

IM-IT-KT 
IP-IT+KT 
JM-JT-KT 
JP-JT+KT 
IF(IM.LE.1)IM-1 
IF(IP.GE.ISIZE)IP-ISIZE 
IF(JM.LE.L)JM-1 
IF(JP.GE.JSIZE)JP-JSIZE 

C 
DO 160 I=IM,IP 

DO 160 J-JM,JP 
C3=(I-IT)**2.0+(J-JT)**2. 
C3-SQRT(C3) 
IF(C3.GT.KT)G0 TO 160 
CELLD, J)=0 

160 CONTINUE 
C 

200 CONTINUE 
C 
210 WRITE(9,150) 999, 999, 999 

C 
CLOSE(9) 
CLOSE(10) 
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C######################## 
C 
c STOP TIMER 
C CALCULATE TIME USED 
C 

# 
# 
# 
# 

C######################## 
C 

CALL GETTIM(IHR2, IMIN2, ISEC2, IHUN2) 
WRITE(6,901)IHR2, IMIN2, ISEC2, IHUN2 

901 FORMAT(IX,'FINISHING TIME : : ',12,';'12,':',12,','12) 
C 

IHRD-IHR2-IHR1 
IMIND-IMIN2-IMIN1 
ISECD-ISEC2-ISEC1 
IHUND-IHUN2-IHUN1 
IF(IHUND.GE.O)GO TO 903 
IHUND-IHUND+100 
ISECD-ISECD-1 

903 IF(ISECD,GE.O)GO TO 904 
ISECD-ISECD+60 
IMIND-IMIND-1 

904 IF(IMIND.GE.O)GO TO 905 
IMIND-IMIND+60 
IHRD-IHRD-1 

905 WRITE(6,902)IHRD, IMIND, ISECD, IHUND 
902 FORMAT(IX,'TIME USED ',12,':'12,':',12,'.'12) 

C 
STOP 
END 
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g************************************************************ 
C * 
C NAME: CIRITR.FOR * 
C * 
C PURPOSE: ITERATIVE CIRCLE FIT PROCEDURE FOR RAINDROP * 
C PROJECT * 
C * 
C * 
C * 
C * 
C PROGRAMMER : W C VENTER * 
C * 
C DATE WRITTEN: 12/17/88 * 
C * 
C LAST REVISION: 4/21/89 * 
C * 
g************************************************************ 
C 

PROGRAM CIRITR 
C 
Q************************ 
C * 
c SYMBOL DECLARATIONS * 
C * 
g * * * * * * * * * * * * * * * * * * * * * * * *  

C 
INTEGER*2 IHRL, IMINL, ISECL, IHUNL 
INTEGER*2 IHR2, IMIN2, ISEC2, IHUN2 
INTEGER*2 IHRD, IMIND, ISECD, IHUND 

C 
INTEGER*2 I, J, K, L, K2, L2, RAD, ISIZE, JSIZE 
INTEGER*2 KM, KP, LM, LP, TOT, NUM 
INTEGER*2 IM(256,256), CELL(256,256) 
REAL*4 C3, RRAD, DUML, PER 
CHARACTER*20 FNAME 

C 
C################### 
C # 
C OPEN FILES # 
C # 
C################### 
C 

WRITE(6, 80) 
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80 FORMAT(IX,'NAME OF IMAGE FILE?') 
READ(6,90)FNAME 

90 FORMAT(A20) 
C 

WRITE(6,200) 
200 FORMAT(IX, 'PERCENTAGE OF PIXELS INSIDE ORIGINAL RAINDROP?' ) 

READ(6,*)PER 
PER-PER/100.0 

C 
OPEN(10, FILE-FNAME, STATUS-'OLD') 
OPEN(11, FILE-'CELL', STATUS-'UNKNOWN') 
OPEN(12, FILE-'CELL.MAP', STATUS-'UNKNOWN') 

C 
C############## 
c # 
C START TIMER # 
C # 
C############## 
C 

CALL GETTIMdHRl, IMINl, ISECl, IHUNl) 
WRITE(6,900)IHR1, IMINl, ISECl, IHUNl 

900 FORMAT(IX,'STARTING TIME : : ',12,':'12,';',12,'.'12) 
C 
C############## 
C # 
C PROGRAM # 
C # 
C############## 
c 

READ(10,*)ISIZE, JSIZE 
READ(10,*)((IM(I,J),J-1,JSIZE),I-1,ISIZE) 

C 
C################### 
c # 
C INITIALIZE CELLS # 
C # 
C################### 
C 

DO 95 I=1,ISIZE 
DO 95 J=l,JSIZE 

95 CELL(I,J)=0 
C 
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DO 100 I-2,ISIZE-1 
WRITE(6,160)I 
DO 100 J-2,JSIZE-1 

C 
C########################################################### 
c # 
C FIT LARGEST POSSIBLE RAINDROP CENTERED AT EACH PIXEL # 
C # 
C########################################################### 
C 

RAD-1 
150 KM-I-RAD 

KP-I+RAD 
LM-J-RAD 
LP-J+RAD 
IF(KM.LT.1)KM-1 
IF(KP.GT.ISIZE)KP-ISIZE 
IF(LM.LT.1)LM-1 
IF(LP.GT.JSIZE)LP-JSIZE 
NUM-0 
TOT-0 
DO 130 K-KM,KP 

DO 130 L-LM,LP 
C3-(K-I)**2+(L-J)**2 
C3-SQRT(C3) 
RRAD-RAD 
IF(C3.GT.RRAD)G0 TO 130 
NUM-NUM+1 
IF(IM(K,L).EQ.O)GO TO 130 
TOT-TOT+1 

130 CONTINUE 
DUMl-FLOAT(TOT)/FLOAT(NUM) 

C###################################################### 
c # 
c DETERMINE IF FITTED CIRCLE CONTAINS ENOUGH RAINDROP # 
C # 
C###################################################### 
C 

IF(DUM1.LE.PER)G0 TO 140 
RAD=RAD+1 
GO TO 150 

140 CELL(I,J)-RAD-1 
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100 CONTINUE 
C 
C################### 

CONTINUE 

C 
C WRITE OUT DATA 
C 

# 
* 
* 

C################### 
C 

WRITE(11,160)ISIZE, JSIZE 
160 FORMAT(IX,215) 

WRITE(11,170)((CELL(I,J),J-1,JSIZE),1-1,ISIZE) 
170 FORMAT(IX,1615) 

C 
C################################## 
C # 
c WRITE OUT DATA IN MAP FORMAT # 
C # 
c################################## 
c 
c KM-JSIZE/16 
C DO 300 K-1,KM 
C K2-(K-1)*16+1 
C L2-K*16 
C DO 310 I-L,ISIZE 
C 310 WRITE(12,400)(CELL(I,J),J-K2,L2) 
C WRITE(12,410) 
C 300 CONTINUE 
C 
C 400 FORMAT(IX,1614) 
C 410 FORMAT(IX) 
C . 
C######################## 
C # 
c STOP TIMER # 
C CALCULATE TIME USED # 
C # 
C######################## 
C 

CALL GETTIM(IHR2, IMIN2, ISEC2, IHUN2) 
WRITE(6,901)IHR2, IMIN2, ISEC2, IHUN2 

901 FORMAT(IX,'FINISHING TIME : : ',12, ':'12, ':',12,'.'12) 
C 

IHRD=IHR2-IHR1 
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IMIND-IMIN2-IMINL 
ISECD-ISEC2-ISEC1 
IHUND-IHUN2-IHUN1 
IF(IHUND.GE.O)GO TO 903 
IHUND-IHUND+100 
ISECD-ISECD-1 

903 IF(ISECD.GE.O)GO TO 904 
ISECD-ISECD+60 
IMIND-IMIND-1 

904 IF(IMIND.GE.O)GO TO 905 
IMIND-IMIND+60 
IHRD-IHRD-1 

905 WRITE(6,902)IBRD, IMIND, ISECD, IHUND 
902 FORMAT(IX,'TIME USED ,12,':'I2,':',12,'.'12) 

CLOSE(10) 
CLOSE(11) 
CLOSE(12) 

STOP 
END 
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